From The Brain To AI (Neural Networks | What Is Deep Learning | Deep Learning Basics)

이 시리즈의 마지막 비디오에서 깊은 차이점을 논의 학습 및 기계 학습, 방법 및 방법 딥 러닝 분야는 공식적으로 태어나고 주류 인기 이것의 초점 비디오는 인공 신경에있을 것입니다 더 구체적으로-네트워크 구조

독수리, 전투기 동안 이 두 별개의 실체는 모두 수행 동일한 작업, 비행, 그들이 달성하는 방식 매우 다릅니다 전투기 매우 전문적이고 공학적입니다 매우 구체적인 기계 작업과 그 작업을 극도로 실행 잘 독수리, 생물 시스템 확실히 훨씬 더 복잡합니다 다양한 방법으로 가능 일반화 된 작업 이 비유는 차이점과 많은 유사점 우리의 두뇌와 딥 러닝 시스템

그들은 둘 다 임무를 수행 할 수 있지만 패턴 인식의 두뇌는 매우 복잡한 일반 시스템 다양한 작업을 수행 할 수 있습니다 딥 러닝 시스템은 설계되었지만 매우 구체적인 작업에서 탁월합니다 에 딥 러닝을 더 잘 이해하고 이 비유와 인라인 유지 비행, 기본으로 돌아가 봅시다 에 대한 한 시스템의 기본 원칙 이해하기가 훨씬 쉽다 더 높은 수준의 이해 그 응용 프로그램 및 기능 상기 시스템 우리가 비디오에서 논의했듯이 과거에 딥 러닝은 연결 분야, 부족 목표가있는 머신 러닝 뇌를 디지털 방식으로 재구성합니다

이제 우리가 반드시해야하는 두뇌를 디지털 방식으로 재구성 먼저 가장 간단한 디지털 재구성 뇌의 구성 요소, 뉴런 이것은 뉴런의 예술적 표현, 다극 뉴런이 정확해야합니다 있다 뉴런의 세 가지 주요 구성 요소 : 1) 소마, 이것은 '뇌'* 메타 *입니다 정보 처리 센터를 말하십시오 세포체로 구성된 뉴런의 그리고 핵 2) 축색 제, 이것은 길다 전달하는 뉴런의 꼬리 세포체와의 정보

3) 수상 돌기, 이것들은 뉴런에서 분기 팔 다른 뉴런에 연결하십시오 우리가 논의한대로 Neuromorphic에 대한 이전 비디오에서 계산에 따르면 뇌는 천억이 넘습니다 100 조 이상의 시냅스를 가진 뉴런 시냅스와 연결 다른 뉴런 우리가 생각한다면 극도로 감소하는 관점, 우리 두뇌를 하나로 간주 할 수 있습니다 거대한 신경망 점점 더 많은 것을 알지 못합니다! 따라서 왜 연결 주의자들은 시도에 너무 단단합니다 뇌를 재구성하고 긴급 속성이 등장합니다! 이제 물러서서 개별 뉴런, 이것은 우리 중 하나입니다 뉴런의 첫 사진 안으로 그려지다 19 세기 후반 스페인의 해부학자에 의해 산티아고 라몬이 카할 그는 소개 될 수있는 얼룩을 사용했습니다 조직에 현미경을 사용하여 그가 본 것을 그립니다

이제 당신은 여기에 무엇을 볼 우리가 방금 논의한 것은 세포체, 긴 꼬리와 수상 돌기 서로 이제이 그림을 뒤집어 봅시다 거꾸로하고 추상적으로 매핑 오른쪽에있는 뉴런의 구성 요소 측면 먼저 우리는 소마를 원으로 표시 한 다음 긴 줄이 오는 축삭 뉴런에서 마지막으로 여러 줄로 표현되는 수상 돌기 뉴런으로 연결됩니다 보시다시피 여기, 우리는 기본적인 방법을 목격하고 있습니다 딥 러닝 신경의 구조 89 00 : 02 : 52,670-> 00 : 02 : 56,360 그물이되었습니다! 에 대한 토론을 시작하려면 뉴런이 작동하는 방식으로 수상 돌기는 입력으로 간주 우리의 뉴런에 몸에서 수상 돌기 그들의 전기 활동을 찾으십시오 끝 그것이 다른 것에서 오는지 여부 뉴런, 감각 또는 다른 활동 그 신호를 세포체로 보내십시오

그만큼 그런 다음 soma는 이러한 신호를 받아 시작합니다 그들을 축적하고 특정 신호 임계 값, 축삭은 활성화, 시스템의 출력 본질적으로 매우 간단한 방법으로 뉴런의 정보 처리는 그냥 물건을 추가하십시오 그리고 그것을 바탕으로 하나 수상 돌기 활동을 축삭 활동의 수준 다시 말해, 더 많은 수상 돌기 더 자주 그들은 축삭이 얼마나 자주 활성화되었습니다 이제 우리는 기능의 추상적 이해 뉴런의 시스템에 더 추가합시다 신경망을 형성하기 시작합니다

같이 앞에서 언급 한 바와 같이 뉴런을 시냅스라고합니다 수상 돌기, 하나의 입력 뉴런은 축삭에 붙어 있습니다 다른 사람의 출력 라몬으로 돌아 가기 카잘의 첫 번째 뉴런 그림 당신은 그가 보고이 작은 것을 볼 수 있습니다 수상 돌기의 마비 여기가 다른 뉴런의 축색 돌기는 현재 뉴런의 수상 돌기 측면에서 우리의 추상적 인 그림의 우리는 이 연결을 원형으로 나타냅니다 마디 축색 돌기는 수상 돌기에 연결될 수 있습니다

강하게, 약하게 또는 그 사이의 어떤 것 지금, 우리는의 크기를 사용합니다 연결 노드를 나타내는 연결 강도, 연결 입력이 얼마나 활발한가 뉴런 연결은 출력 뉴런 수상 돌기 우리는 또한 이 연결 강도에 값을 할당하십시오 0과 1 사이, 1은 매우 강하고 0에 가까워지고 있습니다 앞으로 확장 될이 가치 비디오 참조 연결 무게로 보시다시피 우리는 더 많은 뉴런을 추가하기 시작합니다 많은 다른 입력으로 흥미로운 뉴런은 수상 돌기에 연결될 수 있습니다 각각 하나의 출력 뉴런 연결 강도가 다릅니다

이제 연결되지 않은 모든 것을 제거합시다 수상 돌기 및 또한 노드를 제거 우리는 연결을 나타내야했다 강도, 단순히 두께를 보여 무게를 나타내는 선의 그 연결 이제 뒤집어 가로로 다이어그램을 보면 현대 딥 러닝의 시작 신경망 아키텍처 이후 이 비디오의 시작, 우리는 우리에서 갔다 수조의 엄청나게 복잡한 뇌 연결과 미묘한 운영과 상호 연결성 신경망을 이해하기 간단 모델 우리 시스템은 여기 바로 그 모델입니다 그

뇌에서 신경으로 네트워크는 매우 축소 과정입니다 그리고 사이의 진정한 관계 생물학적 시스템과 신경 네트워크 은유적이고 영감을줍니다 우리의 두뇌, 제한된 이해 우리는 그들 중 엄청나게 복잡하다 수조 개의 연결과 많은 다른 유형의 뉴런 및 기타 병행하여 작동하지 않는 조직 그냥 같은 인접 레이어에 연결 신경망 주제에 다시 돌아와 우리가 사용하는 용어 이 네트워크를 설명하십시오, 그것은 사실입니다 그들은 여전히 ​​매우 유용합니다 큰 표현을 도출 마지막에 언급 한 데이터 양 이 시리즈의 비디오 그리고 지금 우리는 이것들의 구조가 어떻게 보 였는지 네트워크가 개발되었습니다 이 표현은 층

출력 노드를 생각하는 방법 그들이 노드의 합이라는 것입니다 그들을 강하게 활성화시키는 가장 강한 무게의 연결 예를 들어 5 개의 입력이 있다고 가정 해 봅시다 문자를 정의하는 노드 : A, B, C, D 그리고 E이 경우 출력 노드는 ACE에 의해 정의됩니다 여기 있습니다 저급에서 목격 표현, 개별 문자 높은 수준의 표현 단어를 포괄하고 계속 가면 에, 문장 등-이 단순한 예는 자연어의 기초이다 가공

편지를 넘어서 방법론은 모든 유형의 이미지의 픽셀 값에서 입력 오디오의 이미지 인식 연설을위한 연설의 빈도 더 복잡하고 추상적 인 인식 영양 정보와 같은 입력 의료 병력은 예를 들어 암의 가능성 지금 우리가 앞서 기 전에 더 높은 수준의 예측으로 확대 더 복잡한 초록의 능력 딥 러닝 시스템의 응용 이 다음 동영상 세트에서 시리즈, 우리는 포괄적 인 과정을 거칠 것입니다 예를 들어, 많은 새로운 것을 소개합니다 직관적 인 방법으로 용어와 개념 노드 네트워크의 이해를 돕기 위해 작업 그러나 이것이 당신이 가지고 있다는 것을 의미하지는 않습니다 더 배우기를 기다립니다! 원한다면 딥 러닝에 대해 더 배우고 실제로 현장에 대해 배우는 것을 의미합니다 이러한 인공 학습 알고리즘 뇌에서 영감을 얻어 기초 빌딩 블록 퍼셉트론, 멀티 레이어 확장 네트워크, 다른 유형의 네트워크 컨볼 루션 네트워크, 재발과 같은 네트워크와 훨씬 더 많은 다음 화려한

org는 당신이 갈 곳입니다! 안에 자동화를 통한 세계 알고리즘이 점차 대체 될 것입니다 더 많은 직업, 그것은 개인으로서 우리에게 달려 있습니다 우리의 뇌를 날카롭게 유지하고 여러 분야에 대한 창의적인 솔루션 문제와 화려한 플랫폼입니다 그렇게 할 수 있습니다 예를 들어 매일 매일 도전이 있습니다 다양한 코스를 다룰 수 있습니다 STEM 도메인 이러한 도전은 그들이 그리는 방식으로 제작 당신은 다음 새로운 것을 배울 수 있도록 직관적 인 개념 설명 특이점을 지원하려면 번영과 더 많은 것을 배우십시오 Brilliant, brilliant

org/로 이동하십시오 특이! 또한 처음 200 그 링크에가는 사람들은 20 %를 얻을 것입니다 연간 보험료 할인 혜택! 이 시점에서 비디오는 결론, 감사합니다 그것을 볼 시간을내어! 만약 너라면 그것을 즐겼다, 나를지지하는 것을 고려해라 Patreon 또는 YouTube 회원 자격 유지 이 도전이 커지고 있습니다! 우리를 확인 자세한 내용은 웹 사이트를 참조하십시오 더 많은 콘텐츠를 구독 한 입 크기에 대한 우리의 페이스 북 페이지 내용의 덩어리 안쿠 르였습니다 당신은 특이점을보고있다 번영과 곧 다시 ll겠습니다! [음악]