Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning

Questpond의 YouTube 채널에 오신 것을 환영합니다 오늘 우리는 배울 것입니다 머신 러닝의 기본 원리

작업을 시작하기 전에 매우 중요하고 귀엽고 감동적인 댓글을 통해 사람들이 우리 채널에 넣었습니다 구체적으로 우리는 Himal 선생님으로 시작할 것입니다 당신 같은 구독자 덕분에 우리는 그러한 비디오를 만들 수 있습니다 우리는 당신과 같은 독자들로 인해 존재합니다 반품 선물로 우리는 당신에게 평생 구독을 제공하고 있습니다 네, 잘 들었습니다 당신이 우리가 가르 칠 수있는 시간까지 우리와 연결되도록 무료

다음 의견은 Priya Bist에서 나옵니다 이 비디오는이 의견을 다루어야합니다 이 비디오에서는 머신 러닝의 기본 이해 기계 학습, 기계 학습 소개로 시작합니다 알고리즘 및 교육 데이터에 대해 이야기합니다 머신 러닝의 벡터에 대해 이야기 할 것입니다 머신 러닝의 모델은 무엇입니까? 기계 학습의 입력 및 출력을 정의하는 기능 및 레이블에 대해 이야기합니다 BOW, 즉 Bag of Words에 대해 이야기하겠습니다

우리가 무엇을 시작하자 기계 학습? 기계 학습 공부의 영역이다 우리가 원하는 곳 기계 인간처럼 생각하기 인간처럼 행동합니다 이 여행 기계에서 나오는 인간에게 또는 기계 만들기 인간처럼 생각하면 적어도 두 가지가 필요합니다 하나는 일종의 사고가 필요하다는 것입니다 인간은 생각할 수 있습니다 둘째 인간은 경험이 성숙 해지고 주변에서 배웁니다 학교에서 배우다 부모로부터 배우다 등등 어쨌든 우리는 기계를 넣어야합니다 기계가 생각하게 만드는 두 가지 두 번째는 우리는 학습으로 기계가 성숙 해지는 것을 볼 필요가 있습니다

기계의 사고력은 어떤 종류의 알고리즘 우리 알고리즘을 넣어 기계의 사고력을 만들어야합니다 상황에 따라 우리는 다른 종류의 알고리즘을 가질 수 있습니다 가장 먼저 기계 학습 알고리즘이 필요합니다 그런 다음이 알고리즘 훈련 데이터를 제공합니다 그들을 훈련시킬 것입니다 경험 부분은 알고리즘에 일종의 훈련 데이터를 제공함으로써 가져옵니다

하나는 알고리즘 사고입니다 그리고 훈련 데이터를 제공함으로써 우리가 할 수있는 경험 또는 성숙 된 힘 컴퓨터는 숫자 만 이해합니다 우리가 제공 할 때 숫자는 매우 쉽게 훈련됩니다 그러나 텍스트, 오디오, 비디오 및 이미지가 있다면 우리는 그것들을 변환해야합니다 형식의 종류 그리고 것들 번호 그 숫자는 벡터 머신 러닝 데이터가있는 경우 순수한 숫자는 매우 쉽습니다 그러나 우리가 어떤 종류의 텍스트를 가지고 있다면 오디오, 이미지 또는 어떤 종류의 문서 문서를 숫자로 변환해야하며 이것을 벡터라고합니다

벡터는 숫자의 모음입니다 우리는 알고리즘이 있습니다 우리는 알고리즘을 훈련하고 있습니다 그리고 그렇게함으로써 우리는 경험 알고리즘을 가지고 있습니다 이 경험 알고리즘을 모델이라고합니다 모델은 알고리즘입니다 어떤 종류의 경험으로 훈련 데이터에서 얻은 것입니다 모델은 가장 중요한 부분입니다 모든 머신 러닝 프로젝트

머신 러닝 프로젝트부터 시작하려면 가장 먼저 우리 마음에 와야한다 우리는 하루 종일 어떤 모델을 기대하고 있습니까? 모델 수단 훈련 된 알고리즘 어떤 종류의 훈련 데이터를 사용하여 기계를 훈련시킬 때 우리는 그 훈련 데이터를 기능 및 레이블 이러한 기능 및 레이블은 입력 및 출력입니다 기능 입력 라벨이 출력됩니다 기능이란 무엇입니까? 특징은 중요한 특성입니다 이것은 텍스트에서 추출되어 기계가 배우고 자하는 물건, 사물, 실체 또는 무엇이든 설명합니다 빨강, 둥글고 달콤하다고 말할 수 있습니다 이 레드, 라운드 및 스위트를 볼 때 기계에 알려줍니다 그것이 애플이라고 생각하십시오

원뿔 모양이 보이면 노랗고 나뭇결 그것이 옥수수라고 생각하십시오 노란색, 달콤하고 육즙이 보이면 망고라고 생각하십시오 피처는 입력이며 레이블은 기계가 해당 피처에 대해 생각하기를 원하는 것입니다 교육 데이터를 제공 할 때마다 기능 및 레이블 측면에서 제공해야합니다 논의했듯이 기능은 머신 러닝에서 매우 중요한 부분입니다

우리는 할 수있는 메커니즘이 필요합니다 교육 데이터에서 기능을 추출합니다 누군가는 텍스트 형식으로 교육 데이터를 제공합니다 오디오 형식 또는 비디오 형식 우리는 어떻게 든 그 텍스트에서 기능을 추출해야합니다 나중에 기능에 레이블을 지정해야하며 이는 기계에 대한 교육 입력이 될 것입니다 사용할 수있는 많은 시간이 테스트 된 메커니즘이 있습니다 기능을 추출합니다

사용 가능한 가장 간단한 메커니즘은 BOW-단어의 가방 단어의 가방 개념이다 또는 자유 텍스트에서 기능을 추출 할 수있는 프로세스 Bag of Words는 단순화 된 표현입니다 큰 텍스트 문서에 대한 단어 우리는 텍스트 두 줄 문장이 있습니다 오늘은 야채 요리하는 법을 배웁니다 야채를 요리하려면 먼저 씻어야합니다

이를 위해이 두 문장을 나타내는 중요한 단어를 추출 할 수 있습니다 오늘 추출했습니다 배우고 요리하십시오 야채와 세척 단어의 가방은 실제로 문법을 확인하지 않습니다 또는 단어의 위치를 ​​확인하십시오 중요한 단어를 추출하려고합니다 중 하나 과정은 그것은 중지 단어를 피하려고 시도합니다 우리는 그런 동사를 많이 가질 수 있습니다

문서의 표현을 단순화하지 못할 수도 있습니다 중지 단어를 적용 할 수 있습니다 우리가 우리의 의지, 방법, 방법을 추출하지 않는 것처럼 우리는 이것에 의해 정지 단어를 교차시킬 수 있습니다 우리는 그 두 개의 라이너 텍스트로부터 중요한 단어만을 추출 할 수 있습니다 Bag of Words의 일부 중 하나 우리가하는 일은 우리는 또한 아니오를 얻으려고 노력합니다

발생 이 문서에서는 요리가 두 번 발생했습니다 그래서 우리는 또한 아니오를 적어 두었습니다 발생 나중에 이 중요한 단어 모음은 숫자 즉 벡터로 변환 할 수 있습니다 기계에 공급 그런 다음이 기능에 라벨을 붙입니다 기계가 훈련받을 수 있도록 Bag of Words는 텍스트를 단순화 한 표현입니다

아니 발생 그러나 문법이나 단어가 처음에 오는 곳 또는 마지막에 오는 곳은 고려하지 않습니다 비디오의 끝을 알려줍니다이 비디오에서는 다음과 같은 중요한 기본 사항을 이해하려고했습니다 기계 학습, 알고리즘, 교육 데이터, 벡터, 모델, 기능, 레이블, BOW 등의 기본 사항 기계 학습의 다음 단계로 우리는 당신이 볼 것을 권장합니다 파이썬 비디오

화면에 우리는 번쩍였다 파이썬 1 시간의 튜토리얼 이 튜토리얼을 살펴보면 파이썬에 익숙해야합니다 대단히 감사합니다! 행복한 학습