AI Institute "Geometry of Deep Learning" 2019 [Workshop] Day 2 | Session 2

[음악] >> 다음은 CMU의 Nina입니다 데이터 중심 알고리즘 설계에 대해 이야기합니다 여기 있습니다, 니나 >> 멋지다

그래서 나는 사용에 대해 이야기 할 것입니다 데이터 중심 또는 자동 알고리즘 설계를위한 기계 학습 특히 최근에 이에 대한 확실한 보증에 대해 데이터 중심 알고리즘 설계의 매우 흥미로운 영역이라고 생각합니다 대화에서 나는 집중적 인 문제에 초점을 맞출 것이다 분리 된 구조에서도 마찬가지입니다 이산 구조에 대한 조합 알고리즘 제가 생각하는 방식은 기계 학습 및 학습 이론 사용 컴퓨팅 및 알고리즘 설계 이론에 영향을 미치기 위해 희망적으로, 해당 응용 분야

매우 높은 수준의 동기 부여로 시작하겠습니다 이 작업 라인을 위해 알고리즘을 설계하고 분석하는 고전적인 방법 조합 문제에 대한 부과 우리가 설계 한 알고리즘 주어진 문제는 해결하는 데 사용됩니다 문제의 더 나쁜 사례 알고리즘에 전혀 정보가 전혀 없습니다 이 기본 프레임 워크에서 우리가 추구하는 성능 보장 우리 알고리즘은 알고리즘이 해결에도 성공 최악의 경우 근본적인 알고리즘 문제 이 고전적인 틀 안에서 우리는 쉬운 몇 가지 문제가 있다는 것을 알고 있습니다 예를 들어 우리가 걱정한다면 러닝 타임은 우리의 주요 성과 측정입니다

우리는 우리가 가르치는 문제가 있다는 것을 알고 있습니다 우리가 가지고있는 기본 학부 알고리즘 과정 출력이 보장되는 최적 다항식 시간 알고리즘 최적의 솔루션 최악의 경우에도 다항식 시간 그래서 쉬운 몇 가지 문제가 있습니다 클래식 프레임 워크 내에서 그러나 클래식 프레임 워크 내 대부분의 문제는 우리는 그러한 강력한 성능을 보장하지 않습니다 따라서 어려운 문제의 예는 다음과 같습니다 클러스터링 문제, 파티셔닝 문제, 실제로 부분 집합 선택 문제 대부분의 조합 문제는 고전적인 틀 안에서 어렵다 한 가지 흥미로운 접근법 실제로 이러한 어려운 문제에 일반적으로 사용되는 특히 우리가 해결해야 할 경우 근본적인 알고리즘 문제의 한 인스턴스 만이 아니라 그러나 우리가 반복적으로 해결해야하는 경우 기본 알고리즘 문제의 인스턴스

한 가지 흥미로운 접근법이 이 어려운 문제를 해결하는 연습은 사용하는 것입니다 머신 러닝 및 인스턴스 배우기 위해 주어진 영역 우리의 인스턴스 유형에서만 잘 작동하는 알고리즘 물론 이것은 매우 자연스러운 아이디어입니다 실제로는 주어진 유형의 조합 문제에 대해 다른 설정에서 다른 방법이 더 좋습니다 종종 우리가 선택할 수있는 많은 방법이 있습니다 그래서 사용하려고 매우 자연 스럽습니다 머신 러닝 및 인스턴스 우리의 특정 영역에서 배우는 문제 우리의 인스턴스 유형에서만 잘 작동하는 알고리즘

실제로이 접근 방식은 AI 커뮤니티를 포함한 많은 응용 커뮤니티, 에릭 호 비츠가 실제로 이것에 대해 초기 작업을 한 것처럼 또한 전산 생물학 공동체에서 AI 기반 메커니즘 설계 커뮤니티 머신 러닝을 사용한다는 아이디어는 알고리즘을 배우는 데 널리 사용되었습니다 다양한 응용 커뮤니티에서 실제로 몇 가지 획기적인 이러한 영역은이 접근 방식에서 비롯되었습니다 하지만 놀랍게도 기본적으로 아주 최근까지 우리는이 접근법에 대해 공식적으로 거의 알지 못했습니다 오늘 대화에서 최근에 진행 한 작업을 조사하려고합니다 우리는 내 학생들과 공동 작업자와 함께 공식적인 보증을 제공하기 위해 이 데이터 중심 알고리즘 선택

>> 공식 또는 집단 또는 둘 다에 대한 공식 보증? >> 그래서 논의하겠습니다 당연하지, 우리는 분포 학습 형식화를 사용하거나 온라인 학습 공식화와 실제 의미 보증은 특정 공식화에 따라 달라집니다 몇 가지 사례 연구에 대해 언급하겠습니다 또한 힌트를 드리겠습니다 에 의해 발생하는 더 일반적인 원칙의 최악의 종류 이 문제들에 대해 생각하고 더 넓게 특정한 경우를 넘어서 적용 가능합니다 또한 많은 사람들이 여기 청중에는 AI와 기계 학습이 있습니다

나는 분명히 지적하고 싶습니다 이것은 매우 뜨거운 주제와 관련이 있습니다 요즘처럼 응용 기계 학습에서 하이퍼 파라미터 튜닝, 자동 ML, 메타 학습 물론이 주제는 그러한 주제 등과 관련이 있습니다 그러나 우리의 설정에 대해 생각하십시오 조합 설정에 있고 또한 우리는 많은 것에 반대되는 입증 가능한 보증 이러한 주제와 더 많은 내용은 보증없이 ML을 적용합니다

이것은 개괄적 인 개요입니다 이 구조로 제 이야기는 다음과 같습니다 : 우리가 어떻게 생각할 수 있는지 설명하겠습니다 데이터 중심 알고리즘 설계 또는 선택 분포 또는 통계 학습 문제로 몇 가지 사례 연구를 언급하고 이 맥락에서 발생하는 일반적인 샘플 복잡성 이론 얘기 할 시간이 없다고 생각합니다 온라인 학습 공식이지만 기쁘다 해당 공식의 세부 사항에 대해 오프라인으로 이야기하십시오 데이터 중심 알고리즘 설계부터 시작하겠습니다 분포 학습 문제로

그러나 구체적으로하기 전에 예를 들어 보겠습니다 데이터 중심의 접근 방식으로 해결할 수있는 문제 이것은 우리 모두에게 매우 친숙한 문제입니다 뉴스 기사와 같은 일련의 개체가 제공되는 클러스터링 웹 페이지 검색 결과 어떻게 든 그것들을 우리가 할 수있는 것처럼 자연적인 그룹으로 묶습니다 내가 지적하고 싶은 것은 문제의 완벽한 예 우리는 반복적으로 해결해야합니다 주어진 클러스터링 문제의 인스턴스 예를 들어 인터넷 검색을하고 있고 뉴스 기사를 클러스터링하기 위해 클러스터링을 사용한 다음, 물론 매일 뉴스 기사를 모아서 실제로 하루에 여러 번

이것은 완벽한 예입니다 반복적으로 해결해야 할 문제 데이터 중심의 접근 방식으로 넘어갈 수 있습니다 공식적으로 어떤 유형의 클러스터링 기술을 사용하고 있습니까? 목표 기반 클러스터링 기준을 사용할 수 있습니다 K- 평균 목적과 같은 특정 목적 함수를 선택 K- 중앙 목표 또는 중심 목표 주어진 입력 데이터 세트에서 최적화하십시오 그래서 이것은 당신이 사용할 수있는 하나의 공식입니다 물론 우리 모두는 예를 들어 모든 구체적인 목표는 K- 평균 최적화, K- 중앙 최적화, NP-hard도 마찬가지입니다

따라서 데이터 중심 접근 방식을 사용하는 것이 좋습니다 데이터 유형에 적합한 알고리즘을 배우고 보편적으로 효율적인 알고리즘이 없기 때문에 최악의 인스턴스에서 작동합니다 객관적인 클러스터링은 데이터 중심 접근 방식의 적절한 적용 하지만 생각해 보면 더 많은 머신 러닝 공식 숨겨진 진실이 있다고 가정 우리는 그것에 가까워 지려고 노력하고 있습니다 비지도 학습 또는지면 진실 버전의 일치 클러스터링 문제도 이 데이터 중심 접근 방식에 적합합니다 이 두 가지 제형 중 하나 데이터 중심 알고리즘 설계로 캐스팅 할 수 있습니다 이제이 예에서는 이제 우리는 어떻게 생각할 수 있는지 설명 할 수 있습니다 분포 학습 문제로서의 알고리즘 선택에 대해 물론 이것은 매우 친숙 할 것입니다 머신 러닝 사람들에게 청중에서 사람들을 배우는 기계

매우 자연 스럽습니다 우리가하는 일은 우리는 해결하고자하는 알고리즘 문제를 해결합니다 시설 위치 또는 클러스터링 또는 좋아하는 조합 문제 그런 다음 큰 가족을 고칩니다 우리의 문제에 대한 알고리즘 과이 될 수 있습니다 가족의 경우에 매개 변수화 됨 다양한 모듈이있을 수 있기 때문에 알고리즘 가족의 알고리즘은 조정해야 할 노브가있는 다양한 모듈

이 알고리즘 계열을 선택합니다 우리는 그것이 잘 작동한다는 것을 알고 있기 때문에 연습하거나 아마도 당신이 가지고 있기 때문에 믿을만한 분석 이유 데이터 유형에 좋을 수도 있습니다 그리고 우리가하는 일은 도메인에서 발생하는 문제의 전형적인 예는 기술적으로 우리는 전형적인 사례의 샘플을 의 일반적인 인스턴스에 대한 IID 샘플입니다 일부 기본 분포 우리의 사례와 이 전형적인 인스턴스 샘플을 사용하여 우리가 희망하거나 새로운 알고리즘 새로운 인스턴스에 대해 잘 알고 있음 동일한 기본 소스에서옵니다 그건 그렇고, 나는이 그림 목록을 사용하고 있습니다 그러나 희망적으로, 그것은 매우 분명합니다

예를 들어 내가 말하고 있다면 시설 위치 이러한 전형적인 사례는 무엇입니까? 첫 번째 샘플은 입력 그래프입니다 두 번째 샘플은 두 번째 입력 그래프입니다 또는 클러스터링을 수행하는 경우 클러스터링 알고리즘을 배우려고하면 클러스터 문서를 말하면 우리의 전형적인 사례는 무엇입니까? 첫 번째 인스턴스는 첫 번째 문서 집합이 될 수 있습니다 두 번째 인스턴스는 두 번째 문서 세트입니다 게다가 라벨이 없을 수도 있습니다

우리가하려고한다면 K- 평균과 같은 객관적인 클러스터링 클러스터링 또는 그들은 당신이 진실을 일치 시키려고한다면 예를 들어 문서를 IID로 클러스터링하고 문서를 클러스터링합니다 훈련 실례를 바탕으로 실제 수업 환경을 설정해야합니다 기본적으로 전형적인 사례, 우리가하고 싶은 일, 우리는 잘 작동하는 알고리즘을 생각해 내고 싶습니다 우리가 잘 수행한다는 것을 증명할 수 있다는 오는 새로운 무작위 인스턴스 동일한 기본 분포에서 훈련 세트로 전형적인 인스턴스의 물론 이제 우리는 통계 학습 이론 이 프레임 워크의 샘플 복잡성 질문 얼마나 큰지를 분석하는 의미 일반적인 인스턴스 집합은 보장하기위한 것입니다

그러나 우리가 잘하는 알고리즘을 넣으면 일반적인 인스턴스의 훈련 세트를 통해 이 알고리즘은 새로운 인스턴스에서도 잘 작동합니다 같은 출처에서 나온 것입니다 그러나 당신은 훈련 세트를 본 적이 없습니다 물론, 우리는 또한 통계 학습 이론에서 이러한 샘플 복잡성 결과를 분석하기 위해 예를 들어 균일 한 수렴과 복잡한 결과 당신이 이해할 수 있어야하는 것은 본질적인 차원 또는 본질적인 복잡성 의 가족에 의해 유도 된 기능 클래스의 알고리즘과 성능 측정 우리가해야 할 일은 절대 치수를 분석하거나 이 유도 된 기능 클래스의 복잡성 물론, 그것은 핵심 수량입니다 일반적인 균일 한 수렴 범위입니다 이 새로운 도메인에서 흥미로운 점은 학습 이론의 관점에서 흥미 롭습니다

이 설정에 나타나는 기능은 일단 알고리즘 학습을 시작하면 우리의 가설 공간은 알고리즘의 공간입니다 이제 우리는 매우 흥미로운 구조를 얻습니다 특히 알고리즘을 배우고 있기 때문에 조합 문제의 경우 본질적으로 해당 알고리즘에는 조합 모듈이 있습니다 매개 변수를 약간 변경하면 매우 다른 결과물을 얻을 수 있습니다 따라서 해당 비용 함수는 급격한 불연속성을 갖습니다

그래서 개념을 분석하려고 시도하는 것이 흥미 롭습니다 이 시나리오의 차원 그래서 그것이 외부에 있습니다 이러한 문제는 모든 고전적인 통계 학습 이론 이 양식의 몇 가지 예를 볼 수 있습니다 다음은 특정 유형의 기능입니다

우리가 살펴본 다양한 응용 프로그램에 나타납니다 시원한 실제로이 생각은 알고리즘 설계 또는 배급 학습 문제는 실제로 팀 러프 가든 (Tim Roughgarden)과 그의 전 학생이 작성한 논문에서 ITCS와 SICOMP에 논문이 실린 Rishi Gupta 거기서 그는보기 알고리즘 선택에서 모델을 제안했습니다 배급 학습 문제로 재분석 된 매개 변수화 된 가족 부분 집합 선택 문제에 대한 탐욕스러운 알고리즘 배낭 문제처럼 그 작업을 참조하십시오 실제로, 나는 종이가 매혹적인 것을 발견했다

아무도 그런 종이를 쓰지 않아서 놀랐어요 아주 자연 스럽기 때문에 그리고 그것은 또한 매우 강력하다고 생각합니다 저의 학생들과 공동 작업자들은 그래서 우리는 그것을 추적하고 분석했습니다 다양한 조합 문제에 대한 새로운 알고리즘 클래스 나는 단지 그들 중 일부를 빠르게 언급 할 것이고 그들 중 몇 가지에 대해 자세히 알아보십시오 예를 들어, 주제에 관한 첫 번째 논문에서 클러스터링 문제와 관련하여 매개 변수화 된 연결 절차를 살펴 보았습니다

클러스터링 다음에 일부는 고정 된 유형의 후 처리에 대해 말합니다 또한 [들리지 않음]의 클러스터링을 위해 우리는 무한 가족을 보았다 로이드의 방법 특히 Lloyd의 방법 중 일부를 매개 변수화했습니다 로이드의 방법을 초기화하는 법을 배웁니다 더 최근에는 일부 동료들과 CMU의 컴퓨터 생물학에서 매개 변수화 된 동적 프로그래밍 절차를 살펴 보았습니다 정렬 문제 해결 서열 정렬과 같은 전산 생물학

이것들은 우리가 살펴본 몇 가지 유형의 계산 문제입니다 우리는 또한 원본 논문을 보았습니다 매우 다른 유형의 알고리즘 예를 들어, 해결하려는 경우 다음과 같이 쓸 수있는 파티션 문제 Max-Cut과 같은 정수 이차 프로그램 우리는 가족을 보았다 알고리즘 또는 반정의 프로그래밍 감소 반올림 된 반올림으로 다시 모든 유형의 인스턴스가 얼마나 둥근 지 알아 봅니다

그런 다음 지금까지 설명한 모든 예에서 실제로 의도적으로 우리의 질문으로 돌아가서 우리가 보는 알고리즘 다항식 시간과 시간 설계 배우려고 노력하는 알고리즘입니다 Max-Cut의 가치가 좋은 것처럼 좋은 솔루션 품질 또는 문서를 클러스터링하거나 시퀀스를 잘 정렬 할 수 있습니다 하지만 우리는 또한 예를 들어, 우리는 혼합 정수 프로그램을 통해 해결하는 것을 보았습니다 유형의 분기 및 바운드 인공 지능과 OR을 사용하는 동안 기술 이 어셈블리의 알고리즘은 문제를 해결하기 위해 최적이지만 그들은 걸릴 수 있습니다 그의 오랜 시간을 최적화하려고 노력하고 있습니다 따라서 알고리즘의 솔루션 품질은 실행 시간입니다

우리는 또한 매우 관련된 기술도 보았다 의 맥락에서 나타나는 다중 구매자, 다중 항목 시나리오를위한 자동화 된 메커니즘 설계 다시, 우리는 여기서 어셈블리를 보았습니다 매개 변수화 된 VCG 경매와 같은 메커니즘 긍정적 인 가격 등 여기서는 수익을 최적화하고 있습니다 따라서 수익, 그의 절차 범위의 솔루션 품질

이 모든 것을 살펴본 결과, 몇 가지 일반적인 패턴이 등장 그에 대해 조금 말씀 드리겠습니다 하지만 그렇게하기 전에 구체적이고 생각할 구체적인 예를 명심하십시오 그리고 당신에게 가족의 간단한 예를 제공하기 위해 클러스터링 문제에 대한 매개 변수화 된 알고리즘 따라서 데이터 중심 접근 방식을 사용하려면 클러스터링 문제의 경우 가장 먼저하고 싶은 일은 당연히 내려 놓는 것입니다 알고리즘 계열 여기, 간단한 가족입니다 우리가 살펴본 알고리즘은 연습을 사용하는 동안 또한 좋은 기사 속성이 있기 때문에 데이터는 안정적인 유형의 인스턴스와 같이 매우 좋습니다 [들리지 않음]에서 알려짐 이러한 경우를 넘어서서 계산한다면, [들리지 않음]

따라서 수식의 균형은 다음과 같이 매우 간단합니다 두 단계가 있습니다 각 요소에는 두 단계가 있습니다 먼저 상향식 연결 절차를 사용하여 데이터를 생성하기 위해 계층 구조에 연결하는 욕심 많은 절차 클러스터 트리를 만든 다음 이 세 가지에 대한 고정 후 처리 예를 들어, 동적 프로그래밍을 위해 최고의 K- 평균 군집 추출 마지막 K- 머지로 클러스터 된 인덱스를 출력 할 수도 있습니다 또는 계층 구조를 사용자와 사용자가 볼 수 있습니다

물론, 그냥 생각 나게하기 위해 상향식 응집 결합 절차는 무엇을 의미합니까? 그래서 우리가하는 일은 그들 만의 작은 클러스터에서 시작하는 것입니다 두 개의 '가장 가까운'클러스터를 반복적으로 병합하겠습니다 물론, 다른 정의 가장 가까운 알고리즘은 다른 알고리즘으로 이어집니다 예를 들어 다음은 '가장 가까운'에 대한 다른 정의입니다 다른 알고리즘으로 이어지는 점의 하위 집합 사이

여기에 예가 있습니다 우리의 고전적인 알고리즘 기본 알고리즘 머신 러닝 과정에서 단일 연결, 정의 하시겠습니까 두 부분 집합 A와 B 사이의 거리 두 하위 집합의 점 사이의 최소 거리가됩니다 여기서는 기준점 사이의 거리가 고정되어 있다고 가정합니다 그래서 우리는이 엔티티를 정의하여 포인트 간의 갱신 거리 및 대응하는 부분 집합 그러나 또 다른 고전적인 알고리즘, 완벽한 연결, 두 부분 집합 사이의 거리를 사이의 최대 거리 해당 하위 집합의 포인트 이제 무한한 가족이 등장한다고 상상할 수도 있습니다 우리가 원할 수도 있기 때문에 연결 절차 이 기본 기준을 보간합니다

예를 들어 여기에 가족의 예가 있습니다 그러나 우리의 일을 살펴보기 위해 알파 가중치 연결이라고합니다 지금은 매개 변수 알파가 있지만 희망이 있습니다 데이터를 조정하고 거리를 정의합니다 두 하위 집합 A와 B 사이 1에서 알파를 뺀 거리 단일 결합과 알파 시간 완전한 연결에 의해 주어진 거리 이것이 알파 가중치 링크의 구체적인 예입니다

가족은 매개 변수화 된 가족의 구체적인 예입니다 조합 문제 클러스터링을위한 알고리즘 이제 우리는 무엇을 이해하기 시작할 수 있다고 생각합니다 이 알고리즘 군의 2 차원은 그건 그렇고, 2 차원은 무엇입니까? 가장 자연스러운 확장 일뿐입니다 실제 유효한 함수에 대한 VC 차원 나는 그것을 정확하게 정의하지 않을 것이다 그러나 이것이 당신이 알아야 할 전부입니다 이 특정 알고리즘 제품군의 경우 나는 당신에 대해 빨리 보여줄 것입니다 절대 치수는 log n뿐입니다

또는 n은 내가 해결해야 할 입력 인스턴스의 포인트 차원이 log n이므로 실제로 당신은 또한 보여줄 수 있지만 실제로 당신이 세트 S 또는 트레이닝 세트의 전형적인 예 클러스터링 문제의 전형적인 사례 우리는 최고의 알고리즘을 찾을 수 있습니다 다항식 시간에이 가족 다른 말로하면 기계 학습 이론 원자에서 그냥 ERM을 해결하십시오 다항식 시간을 효율적으로 이 간단한 군집 절차입니다 이 조합 문제 중 하나에서 여기서의 도전은 실제로 이 조합 유형의 출력으로 인해 언급했듯이 알파를 약간 변경 한 경우, 이것은 의사 결정의 초기에 변화로 이어질 수 있습니다 그런 다음 눈덩이를 만들어 생산할 수있는 연결 절차 나중에 훨씬 더 큰 변화

다시 말해, 약간 변경하면 알파 당신은 완전히 다른 출력을 얻을 수 있습니다 이건 정말 어려움이지만 우리가 보여줄 수있는 것은 이것이 너무 자주 일어나지 않는다는 것입니다 이제 이것은 치수 경계로 이동합니다 특히, 우리가 보여줄 수있는 것은 암시하는 주요 사실 의사 차원은 n의 로그 만입니다 또는 n은 상한이다 입력 인스턴스의 포인트 수 따라서 그 효과는 다음과 같습니다

기본적으로 해당 비용 함수는 부분적으로 일정합니다 그래서 그것은 무엇을 의미합니까? 주어진 알파 값에 대해 연동 알고리즘으로 알파를 실행하면 일련의 결정과 우리는 특정 연계 트리를 만듭니다 물론 알파를 바꾸면 나는 다른 나무를 얻을 것입니다 그러나 여기에서 알파를 0에서 1로 바꾸면 n 포인트의 클러스터링 인스턴스를 수정하면 그런 다음 매개 변수 Alpha를 0에서 1로 변경합니다 또는 최대 n 번째 여덟 번째 스위칭 지점 트리는 인스턴스 변경을 생성합니다

물론 이것은 다음을 의미하지 않습니다 상단의 비용 함수가 무엇이든 k에 대한 근거 진실의 예는 상수 등을 의미합니다 여기에서 해당 비용 함수는 조각 단위입니다 n에서 8까지의 상수 어느 것이 좋을까요? n은 2 차원에 암시 적입니다 엔

빨리 줄게 이 단계가 어떻게 입증되는지에 대한 높은 수준의 아이디어 이 특정 경우에는 전혀 어렵지 않습니다 핵심 아이디어는 다음과 같습니다 따라서 클러스터링 인스턴스를 수정하면 알파를 고치고 싶다고 해봅시다 연계 절차를위한 마일 단위 매개 변수는 어느 것입니까? 알고리즘의 어느 시점에서, 알고리즘은 Blob N_1을 병합해야하는지 결정해야합니다

N_2 또는 Blob과 N_3 및 N_4를 병합해야합니다 권리? 이제 결정은 여덟 가지 점에 달려 있습니다 내가 P & Q로 표시하면 N_1과 N_2에서 가장 먼 지점 그들은 완전한 연결과 P- 프라임에 의해 주어진 거리를 줄 것이고 Q- 프라임은 N_1과 N_2에서 가장 가까운 지점입니다 내가 R과 S로 표시되면 N_3과 N_4 및 R- 프라임에서 가장 먼 지점, S- 프라임은 N_3과 N_4에서 가장 가까운 지점입니다 처음 두 블롭 N_1과 N_2의 병합 여부에 대한 결정 N_3 및 N_4와 비교 이 두 수량 중 어느 것에 따라 달라집니다

알파와 P와 Q 사이의 거리를 곱한 값 +1 사이의 거리에 알파를 1 곱한 값 R 사이의 P- 프라임 및 Q- 프라임 또는 알파 시간 거리 그리고 S + 거리에 1을 뺀 알파 곱하기 R- 프라임과 S- 프라임 사이의 간격이 더 작고 커집니다 당신이 그것에 대해 중요한 지점으로 생각하면 [들리지 않음] 또는 알고리즘 스위치는 여기 평등이있는 순간에요 권리? 다른 말로하면, 중요한 요점은 실제로 이 같은 선형 평등의 뿌리에서 평등이라는 아이디어는 요점으로 주어집니다 그러나 물론 나는 그러한 선형 평등의 여덟 내가 가지고 있기 때문에 내려 놓을 수있는 n 포인트 중 8 [들리지 않음]의 수입니다 이것은 기본적으로 그것을 증명합니다

높은 수준에서 그것을 증명하기위한 핵심 아이디어입니다 알파를 고치면이 특정 간단한 연결 패밀리에 대해 인스턴스를 수정하면 클러스터링 인스턴스 및 알파 변경, 생산 된 8 번째 클러스터링 트리에만 n을 가져올 수 있습니다 10 분이 지났습니다 잘 됐네요 저건 완벽 해 좋은

이 구조적 결과가 나오면 의사 차원 경계를 즉시 증명할 수 있습니다 이것이 내가 당신에게 보여준 것입니다 인스턴스를 수정하면 어떻게 되나요? 알파가 당신에게 해당 cos 함수이지만 물론 당신이 걱정하지 않은 계산 된 의사 차원 의 행동에 대해서만 지정된 인스턴스의 알고리즘 패밀리 그러나 당신은 얼마나 많은 인스턴스에 관심이 있습니다 [들리지 않음] 산산조각 낼 수 있습니까? 우리는 실제로 얼마나 많은 인스턴스를 기하 급수적 인 행동을 취 하시겠습니까? [들리지 않음] 그들이 걱정하고 있습니다 이제는 어떻게되는지 생각해야합니다 m 개의 인스턴스와 클러스터링 인스턴스 내가 이전 경계에서 즉각적인 효과를 알고있는 것은 그러나 내가 m을 가지고 있다면 알파가 달라지면 인스턴스 클러스터링, 나는 여덟 패턴의 거듭 제곱에 m 곱하기 n을 얻을 수 있습니다

n 포인트 및 클러스터링 인스턴스의 경우 그리고 나는 단지 의사 차원 정의를 대략적으로 사용합니다 의사 차원이 무엇인지 계산하고 의사 치수가 최대 m이기 때문에 기하 급수적 인 패턴을 얻을 수 있습니다 가장 큰 m을 풀기 만하면됩니다 기하 급수적 인 패턴을 보호하고 달성합니다 즉, 여기서이 불평등을 해결해야합니다

각 2에서 m까지 가장 큰 m은 상한은 m 곱하기 n을 여덟 번째 n으로 제한한다 따라서 이것들은 즉시 의사 치수는 단지 로그입니다 엔 이 간단한 예를 들어 보자 그건 그렇고 나는 이것을 슬라이드에 가지고 있지 않습니다 실제로 무언가를 얻도록 요청할 수 있습니다

이 보간을 수행하기 위해 실제로는 가능하다는 것이 밝혀졌습니다 그래서 나는 실험의 주인을 가졌습니다 [들리지 않음]에서도 우리는 [들리지 않음]의 부분 집합을 실제로 튜닝하여 조금 얻을 수 있습니다 여기에있는 매개 변수 alpha 3 %와 같은 알파 가중치 연결 그리 많지는 않지만 여전히 3 %를 얻습니다 [들리지 않음] [들리지 않음] 예제를 많이 얻으면 얻을 수 있습니다

하지만 여기 또 다른 가족이 있습니다 클러스터링은 실제로 많은 것을 얻습니다 실제로 거기에 가기 전에 죄송합니다 방금 보여 드렸 기 때문에 끝내겠습니다 이 알파 계열의 의사 차원 연결 절차는 log n만이 log n의 큰 O입니다 실제로 당신은 또한 그것을 보여줄 수 있습니다 실제로 n의 큰 [들리지 않음] n

중 하나 저의 이전 학생들은 저역을 보여주었습니다 또한 구현할 수도 있습니다 당신은 또한 해결할 수 있습니다 다항식 시간의 해당 ERM 문제 만약 내가 당신에게 인스턴스를 주면 찾을 수있는 일반적인 인스턴스 다항식 시간에서 가족의 최고의 알파 비효율적 인 방법 바스티유 다항식 시간 [들리지 않음] 모든 입력 인스턴스가 주어지면 해당 인스턴스의 해당 알파 간격을 계산합니다 당신은 모든 대응을 가지고 모든 중요한 포인트의 연합 샘플보다 평균적으로 최고입니다

그것은 당신이 그것을보다 효율적으로 만들 수 있습니다 작동 학생 피드백 및 실험 중 하나 인 [들리지 않음] 앞에서 언급했듯이 예를 들어 [들리지 않음]에서이 작업을 수행하면 3 % 개선 단일 또는 완전한 연결을 통해 또한 우리가 더 잘할 수있는 [들리지 않음]도 있습니다 괜찮아 하지만 여기에도 실제로 그리고 이것은 내가 말하지 않는 방식이지만 이것은 나를 위해 이해하려고 시도하는 아주 모범이었습니다 이 공간은 어떻습니까 [들리지 않음] 데이터 분석 학습 이론 관점에서 디자인 그러나 우리는 또한 재미를 위해서 실험을했습니다

나는 그것을 옹호하지 않습니다 제목에 사용하여 다른 클래스를 데이터화하는 기술 그러나 실제로 다른 가족 아니면 조금 더 잘할 수도 있습니다 실험적이며 실제로는 실험적으로 관심있는 이론적으로 겨울 인 것은 알파 만 튜닝하지 않는 경우 연결 절차를 조정할뿐 아니라 하지만 거리 기능도 조정하고 있습니다 특히 특정 유형의 데이터의 경우 매우 다른 유형의 거리 정보가있을 수 있습니다 예를 들어 자막 이미지가 있다면 일부 거리 기능을 사용할 수 있습니다 이미지의 픽셀 정보를 기반으로 하지만 당신은 또한 자막에 따라 매우 다른 거리 기능, 그리고 당신은 그것들을 혼합하려고 할 수 있습니다 또는 마찬가지로 손으로 쓴 숫자의 경우 메타 학습에 사용되는 클래식 Omniglot 데이터 세트의 경우 픽셀 정보가 모두 있습니다

스트로크 데이터도 있습니다 문자 작성 방법에 대해 그래서 이것은 매우 무료 유형을 제공 할 수 있습니다 거리 정보 이제 우리는 무한 가족을 내려 놓을 수 있습니다 미터법 또는 거리 함수 무엇을 보간합니까? 이제는 이것들은 현재 두 개의 기본 거리 함수 d0과 d1을 말합니다 이제 튜닝도 시도 할 수 있습니다 이 베타 매개 변수는 거리 함수와 관련이 있습니다 예를 들어, 구체적으로 말하자면 내가 지금 얻을 수 있다면 알파-베타 가중 연결 절차의 가족, 또는 Alpha 매개 변수를 사용합니다 연결 기준을 보간하기 위해 하나의 완전한 연계 거리 매개 변수를 조정하기 위해 매개 변수 베타를 사용합니다

두 개의 고정 기본 거리 함수 사이의 보간 점 쌍 사이 이 Alpha-Beta 가중 연결이라고하겠습니다 다시 분석해 볼 수 있습니다 이 알고리즘 계열의 두 가지 차원은 무엇입니까 물론 최고의 알고리즘을 찾으려고 노력하십시오 데이터 유형에 따라 제품군에서 자세한 내용은 여기로 가지 않겠습니다 우리가 여전히 여기에 보여줄 수 있기 때문에 다시 밝혀졌습니다 이 절차 군의 의사 차원은 알파-베타 가중 연결 절차는 log n입니다

지금 구조 결과는 여전히 간단합니다 그러나 더 좋고 더 복잡합니다 그것을 의사 차원으로 증명하기 위해 이 알파 베타 가중 연결 로그 n, 당신이 보여 주어야 할 것은 다시 이중 기능의 구조에 관한 것 매개 변수가 Alpha-Beta 인 인스턴스를 수정합니다 분할 할 수 있음을 보여줄 수 있습니다 다수의 선형 및 2 차 방정식 인 경우 매개 변수 공간 같은 지역의 두 매개 변수에 대해 동일한 클러스터 트리가 생성됩니다

이걸 가지고 다시 할 수 있으면 이것의 위의 의사 차원의 인수 몇 분 더 있습니까? >> 둘 >> 둘 괜찮아 여기에서 세부 사항을 건너 뛰겠습니다 하지만 봐야 해 이 사실을 포함하는 문제의 구조에

그러나 실제로 다음 단계로 넘어 가기 전에 이 튜닝 알파와 베타에 대해 언급하고 싶습니다 실제로 실제 데이터에 영향을 미쳤습니다 예를 들어 실험이 Omniglot에있는 경우 요즘 메타 학습에 사용되는 고전적인 데이터 세트입니다 여기 보간하면 주어진 거리 함수 사이 에서 얻은 기능에 의해 MNIST의 관련 데이터 세트에 CNN 포함 MNIST에서는 CNN 임베딩에 의한 거리 기능, 컨볼 루션 뉴럴 네트워크 임베딩, 수작업으로 설계된 거리 기능 스트로크 정보를 사용하는 실제로 크게 개선 할 수 있습니다 정확도가 약 9 % 향상되었습니다 여기에 차이가 있습니다

거리 기능이 매우 무료임을 보여줍니다 연구를 위해 이러한 실험을 수행했을 수도 있습니다 단어를 사용할 수 있도록 여기 어딘가에 딥 러닝 CNN 임베딩을 사용하고 있기 때문입니다 나는 실제로 반 입방체이지만 시원합니다 실제로 실제로 개선되는 것을 보는 것이 좋습니다

나는 그것에 만족했다 이제 높은 수준의 이야기로 돌아가서 내가 언급했듯이 다른 많은 유형의 문제를 살펴보고 예를 들어, 파티션 문제 정수 2 차 프로그램으로 작성 될 수 있습니다 여기서는 매개 변수화 된 동일한 결과 절차를 살펴 보겠습니다 반정의 프로그래밍 이완을 줄이거 나 무작위 반올림, 그리고 이것은 세부 사항으로 가지 않고 매개 변수화 된 반올림입니다 여기서 관찰해야 할 요점은 의사 차원 경계를 증명하고 인스턴스를 수정하고 다를 경우 기본 [들리지 않는] 패밀리의 매개 변수 해당 기능은 조각 단위 구조입니다

특히, 여기에는 부분적으로 이차가 있습니다 우리는 단지 n 조각입니다 그것이 여기서 일어나는 일입니다 메커니즘 설계시 관련 구조화가 나타납니다 예를 들어 보시면 완성 된 가격 체계를 갖추기 위해 다중 구매자 다중 항목 시나리오가있는 경우 이제 우리는 각 게시 가격은 각 항목에 설정할 수 있습니다

여기서 다시 발생하는 것은 해당하는 인스턴스 또는 세트를 수정하면 입찰자 및 항목의 하위 집합에 대한 더 나은 가치 가격을 달리하면 해당 수익 함수 각 부분마다 선형으로 매개 변수 공간의 조각이 제공됩니다 선형 분리기의 교차로 이것이 핵심 결정자입니다 작동하는 의사 치수 본딩을 예측하는 데 사용합니다

이 [들리지 않음]에 동기 더 일반적인 정리를 알아 내려고 노력하십시오 문제의 구조를 필요한 것에서 분리하다 통계적 의사 차원 균형을 얻기 위해 여기 추상화가 있습니다 우리가 정말로 관심을 가지는 것은 함수 클래스의 의사 차원을 계산합니다 Alpha에 의해 매개 변수화되거나 알파는 문제의 인스턴스를 가지고 다운 2 클래스 세트를 클러스터링한다고 말합니다 그래서 이것은 의사 차원을 결합시키는 시간입니다

그런 함수 클래스 이것이 무엇을 증명하는지 아십니까? 우리는 이중 클래스 기능의 구조를 이용합니다 이제 듀얼 클래스 기능 문제의 인스턴스에 의해 매개 변수화됩니다 가능한 매개 변수 값을 입력으로 사용합니다 우리가이 모든 영역에서 보여준 것은 이러한 이중 기능은 부분적으로 구성됩니다

우리가 조각으로 구성된 것은 듀얼의 모든 기능은 다음과 같습니다 기본적으로 파티션 할 수 있습니다 함수를 사용하여 매개 변수 공간 잘 동작하는 함수 클래스 F 여기와 같은 각 종 안에있는 해당 비용 함수는 다른 함수 클래스에서 오는 함수 G 자본 G 우리가 보여줄 수있는 것은 기본적으로 당신은 두 차원을 버릴 수 있습니다 정말 신경 쓰는 원래의 기능, Alpha가 함수로 매개 변수화 한 함수 이 이중 기능의 장점에 대해 좋은 점은이 두 가지 기능이 부분적으로 구성되어 있다는 것입니다 여기서 부분은 함수 클래스 F의 함수로 정의됩니다 이 쪽은 함수 클래스의 함수 G G

의사 차원에 본드를 넣을 수 있습니다 내가 걱정하기 때문에 최종 기능의 의 친절 함의 기능이다 이 함수 클래스는 F입니다 G 경계 함수 F에서의 함수 비즈니스 내부의 기능이 훌륭합니다 나타나는 하나의 [들리지 않음] 여기 실제로 VC 치수가 아닙니다 VC 차원을 분류하는 함수 그 기능 클래스의 이중 그 이유가 있습니다 그들은 오픈 라인을 통과하기 시작할 수 없습니다

0 분 남았다 고 생각합니다 그냥 언급하고 싶습니다 하지만 지금까지 분배 학습에 대해 이야기했습니다 온라인 학습에 대한 질문을 할 수도 있습니다 알고리즘은 실제로 온라인 학습 문제라고 생각합니다

그들이 당신에게 주어지지 않은 인스턴스 똑바로하지만 하나씩옵니다 후회하지 않으려 고합니다 이미 언급했듯이 이제 불연속성이 있어야합니다 여기 많은 사람들이 온라인에 있다고 생각합니다 청중의 학습 전문가, 불연속을 공유하면 후회를 달성하는 것은 불가능합니다 그래서 우리는 종이를 제 학생들과 실제로 18 세 였고 후속 논문이었습니다 또는 충분한 조건을 식별 한 번 후회하지 않고 조각 별 Lipschitz 기능에 대한 온라인 학습 그리고 최소한 상태 유지를 보여주세요 이 알고리즘 중 다수 구성 또는 온라인 알고리즘 선택 문제 다시, 나는 이것에 대해 오프라인으로 이야기해야한다

조건은 바로 이러한 조각 별 Lipschitz 기능, 분산 만 대략, 우리는 단지 불연속을 요구합니다 해당 비용 함수는하지 않습니다 분산 된 곳에 너무 집중하십시오 그 주위에 공식적인 정의를 넣을 수 있습니다 다시 한 번 오프라인으로 이야기하게되어 기쁩니다 그러나 나는 요약해서 생각한다 저는 이것이 매우 흥미로운 연구 분야라고 생각합니다

학습 문제로서의 알고리즘 설계에 대해 배급 학습 문제, 통계 또는 온라인 학습 문제 강력한 공식 보증을 제공 할 수 있습니다 또한 학습 이론의 관점에서 내가 생각하는 설정을 발생시키는 구조 매우 흥미롭고 도움 우리는 학습 이론의 한계를 넘어서고 항상 매우 흥미 롭습니다 감사합니다 나는 우리가 N에서 5까지의 하한을 가지고 있다고 생각합니다 >> 우리는 그것을 논의했습니다 >> 그래서 우리는 토론합니다

우리가 알고있는 하한은 N에서 5까지입니다 인스턴스를 보여 주거나 N을 다섯째, 당신은 내재 된 불연속성을 가질 수 있습니다 예 우리는 모른다 N은 5에서 N은 8에서 8 사이에 틈이 있습니다 지금, 그 말의 실험 중 하나 내 죄는 현실 세계 야 N을 다섯 번째로 얻지 못할 것입니다

거리는 매우 복잡합니다 우리가 시도한 모든 것에 그것은 N에서 선형입니다 그래서 당신이 보완 설정에 대한 파라미터를 조정할 수도 있습니다 >> 나는 그것이 당신의 모델에 뭔가 있다고 생각합니다 내가 확신하기 때문에 내 접근 방식에서 N 제곱이 선입니다

>> 그것에 대해 이야기합시다 >> 알겠습니다 다음에는 MIT의 Constantinos가 있습니다 >> 그래서 기계 학습 바이어스와 사용법에 대해 이야기하겠습니다 바이어스를 줄이기 위해 잘린 통계 이 대화의 동기는 종종 데이터 과학 문제에서 데이터 세트로 작업하며 종종 데이터 세트마다 수집합니다 선택 편견이 있습니다 데이터를 수집 할 때 훈련하는 데 사용하는 훈련 세트 테스트 세트와 다른 모델

모델이 진행되는 조건 미래에, 특히 치우친 데이터 세트에 대한 교육 예측에 편견이 생길 것입니다 대화의 목표는 영역을 나타내는 검열 및 절단 통계 하려는 통계에서 절단 된 또는 검열 된 샘플의 추정 잘린 샘플은 샘플이 외부로 떨어지는 상황 관찰 창은 그렇지 않다 관찰되었고 그들의 수 또한 알려지지 않았다 검열은 당신을 의미합니다 최소한의 수 관측 창을 벗어나는 데이터 수 물론 이것은 여러 가지 이유로 발생할 수 있습니다 이러한 유형의 현상

아마도 당신의 측정 장치 측정 대역 밖에서 포화 상태가됩니다 그들이 포화되면 판독 값이 잘못되어 신뢰할 수 없습니다 이것이 검열의 경우입니다 몇 개의 측정 값이 있는지 알고 있습니다 신뢰할 수 있고 몇 개가 아닌지 알고 있습니다 실험 설계가 잘못되었거나 윤리적 또는 기타 법적 고려 사항이있는 상황 추론에 일부 데이터 포인트를 사용하지 마십시오

그래서 몇 가지를 드리겠습니다 보여주는 동기 부여 예제 데이터에 치우침이 있으면 무엇이 잘못 될 수 있습니다 첫 번째는 50 년대 이후 계량 경제학에서 잘 논의 된 질문, 관련이 있습니다 사람들의 소득에 대한 IQ 교육 및 교육 50 년대와 60 년대의 몇몇 작품들은 데이터를 수집하여이 모델과 당신이 생각하는 것이 옳은 일을했습니다 그래서 그들은 수입이있는 가족을 조사했습니다 빈곤 수준의 15 배입니다

공변량이 IQ에 해당하는 데이터를 수집했습니다 훈련, 교육 및 개인의 다른 많은 기능, 예를 들어, 노동 조합에 속하는 등 반응 변수는 그 개인과 그들은 모델을 맞추려고 노력했습니다 특히 그들은 선형 모델을 데이터에 맞추려고 노력했습니다 중요한 것으로 보이는 문제는 임계 값입니다 소득이있는 가족에게 데이터 수집 실제로 임계 값 아래의 한 지점입니다

편견을 도입하다 수입과 수입에 중요하다고 생각되는 기능 특히 나중의 결과는 예를 들어 교육 이외에도 직업 훈련과 IQ는 실제로 이전 작업이 발견 된 수입 대부분 교육은 수입에 중요합니다 괜찮아 따라서 고려하지 않은 이전 작업 임계 값이 잘못된 결론을 내렸다 수입에 중요한 것이 무엇인지 문제를 더 본질적으로 느끼기 위해 여기 다른 예가 있습니다 IQ 대 소득 대신에 높이의 중요성을 이해하려고 노력한다고 상상해보십시오 좋은 농구 선수이고 나는 게으르다 전체 인구를 조사하는 대신 내 데이터 수집 물론 어렵습니다 대신 NBA 데이터를 다운로드하기로 결정했습니다

그래서 가능합니다 NBA 데이터에 모델을 맞추려고하면 높이가 실제로는 농구 경기와 중립적이거나 심지어 부정적인 상관 관계가 있습니다 그러나 그 잘못된 결론 내가 게으르고 사실에서 온 NBA 데이터를 전체 인구 조사에 반대 내가 갖고 싶은 정신적 그림 내가 슬라이드를 진행하는 동안 이것입니다; 예를 들어, 바닐라 선형 회귀에서 우리는 세상이 선 주위의 섭동이라고 가정합니다 그러나 데이터를 가져 와서 임계 값을 설정하면 이것이 Y의 농구 성과이고 X의 높이라고 말하십시오 세계가 선형 일 수 있습니다 선의 섭동

하지만 내가 가고 상상 특히 NBA 데이터를 다운로드하여 나는 오직 임계 값을 초과하는 농구 성능이 우수합니다 이제 해당 데이터를 한 줄에 맞추려고하면 이 라인은 훨씬 더 그럴듯 해 보인다 이 데이터 세트에 대해이 행보다 >> XY 높이입니다 내가 X_i와 독립적입니까? 이것이 추가 노이즈인지 생각합니까? >> 말해봐 그러나 이것은 단지 예일뿐입니다 그러나 우리의 표준은 최소 제곱 회귀 분석은 반응 변수가있는 세계 Theta에 X를 곱한 값에 가우스 잡음과 같은 제로 평균 잡음이 있습니다

>> 그것이 일어나면 안됩니다 당신이 선택한 한 추가 소음 X는 패턴에 관계없이 패턴과 무관합니다 기다리십시오 그러나 Y를 통해 데이터를 선택해야합니다 >>이 상수를 통과하려면 평균 높이 이것으로 구성 그는 이것을 Y와 함께 사용하고 있습니다

그러나 그는 당신에게 X를 알려줍니다 그것을 선택하면 Y를 찾을 수 있습니다 >> 네 그래서 당신은 내가 경우 어떻게 될지 묻는거야 X 변수를 기준으로 자르시겠습니까? >> 네 >> 다음 슬라이드에서 예를 들어 보겠습니다 여기서 나는 Y 잘림에 대해 이야기하고 있습니다 X 잘림도 있습니다

그것은 또한 중요한 문제입니다 나는 잠시 후에 그것에 도달 할 것이다 그러나 Y 잘림에 관한 한 우리는 내가 길을 믿는다는 것을 여기서 본다 내가 믿는 라인 턴은 이 데이터 포인트가 없어야하기 때문입니다 이것은 짧은 사람입니다 소음 때문에 좋은 농구 선수

그래서 그는 그것을 NBA로 만들고 짧은 남자는 좋은 농구 선수라고 믿습니다 그러나 그것은 소음의 결과였습니다 그 사람이 내 데이터 세트에 들어가도록 만들었습니다 X 잘림으로 와서 잘 논의 된 현상이 관찰 됨 최근에 성별 분류기를 사용하면 훈련 된 성별 분류기 인터넷 데이터는 성별 예측에 정말 좋습니다 기본적으로 가벼운 피부 톤의 사람들, 그들은 매우 나쁠 수 있습니다 데이터 세트에별로 표현되지 않은 사람들에게 특히 Microsoft의 여러 성별 분류기, 페이스 북 등은 정말 나빴어요 또는 암흑과 여성의 성별 예측에서 꽤 나쁘다

왜 이런 일이 발생했는지에 대한 설명은 인터넷 데이터는 훨씬 남성이며 코카서스 사람, 더 가벼우 며 피부색이 강한 사람들과 이런 이유로 데이터 세트를 켤 때 다른 사람들에게 덜주의하십시오 당신이 가서 테스트 할 때 특정 하위 인구의 성별 분류기 당신은 실제로 그것을 미리 얻을 수 있습니다 그것은 당신이 일부 잘림이있는 예입니다 X 공변량 일부 하위 인구에 충분히주의를 기울이지 않도록합니다 내가하고 싶은 것은보고 싶어 잘린 통계의 아이디어를 사용하는 방법 이런 종류의 편견이 예측에 들어 가지 못하도록 싸워라 바이어스 데이터 세트를 학습 할 때 일부 모델의 맛을 내고 싶습니다 여러 공동 작업자와 함께 한 작업입니다 나는 세 가지 문제를 중심으로 할 것입니다

절단 및 Y 변수와 관련이 있으며 X 변수의 또 다른 잘림 그리고 세번째는 감독되지 않은 학습 환경 1 번 문제는 다음 시나리오를 고려하십시오 상황을 포착해야합니다 IQ 대 수입 및 키 대 농구 성능 공장이 내 교육 데이터를 생성하는 것은 다음 데이터 팩토리입니다 >> 성별 분류 예에 대해 질문 할 수 있습니까? >> 네 >> 그래서 가능합니다 주요 문제는 잘리지 않는다는 것입니다

테스트 데이터 세트 일 수도 있기 때문입니다 당신이하고있는 시점까지, 이것은 잘하고 있습니다 훈련과 아마도 훈련 그리고 둘 다 일부 수업에서 대표가 부족합니다 >> 클래스 조건 레이어가 아닙니다 >> 네 훈련 데이터가 세트는 테스트 데이터 세트를 나타냅니다

그럼 잘하고 있어요 예측자를 편향시키는 잘림이 없습니다 >> 아니요 손실 기능에 포함되지 않음을 의미합니다 공정성의 측면 작은 인구도 잘 대표되어야합니다 >> 네, 잘림 문제가 아닙니다

그래 자르기와 관련된 첫 번째 문제는 y 축은 훈련 세트를 가정합니다 다음 데이터 팩토리에서 생성됩니다 먼저, 기본 x의 모집단에서 x를 샘플링합니다 그러면 x마다 응답이 계산됩니다 응답은 파라 메트릭 기능과 노이즈입니다

노이즈는 모수 분포에서 나올 수도 있습니다 이 시점까지 이것은 고전 감독입니다 IID 데이터가있는 학습 상황 교육 분포는 테스트 배포 및 수명이 좋습니다 여기서 다른 점은 당신이 볼 때 y와 너 훈련 세트에 포함할지 여부를 결정합니다 그래서 당신은 y를 봅니다

예를 들어 이 남자가 좋은 농구 선수인지 아닌지 그가 좋은 농구 선수라면 당신은 그를 NBA 데이터에 넣었습니다 그렇지 않으면 해당 샘플을 휴지통에 버립니다 이 시나리오에서는이 잘림 Phi를 알고 있다고 가정합니다 그리고 확률적일 수 있습니다 내가 모르는 것은 D를 모른다는 것입니다

인간을 샘플링하는 기본 분포 나는 인간과 관련된 메커니즘을 모른다 좋은 농구 선수를 보유하고 나는 소음 모델을 모른다 그러나 나는 파이 때문에 알고 있습니다 어떤 의미에서는 제어합니다 그래서 다운로드를 선택했습니다 NBA 데이터 또는 IQ vs 적립 예 나는 가서 집중하기로 결정했다 그 특정 이웃과 내 설문 조사를 수행합니다 모델이 캡처되는지 확인하려면 잘린 선형 회귀 시나리오 이 경우 모델이 정렬됩니다

소음은 가우시안입니다 내 잘림은 결정적입니다 숨기는 임계 값입니다 y가 특정 임계 값 미만인 데이터 이 공장에서 생산 한 훈련 데이터에 대한 목표는 목표는 기본 태아를 회복하는 것입니다 메커니즘을 결정하는 기본 매개 변수 Gouleakis에 대한 결과는 Tzamos, Zampetakis 및 Rao와 함께 Ilyas가 여기에있었습니다 Rao, Ilyas 및 Zampetakis는 두 종류입니다

따라서 일반적인 프레임 워크입니다 이러한 종류의 시나리오에서 모델을 학습합니다 또한 이것은 일반적인 SGD 기반 프레임 워크입니다 GPU로 배송하여 Thetas를 복구 할 수 있습니다 이제 일반적인 프레임 워크는 잘린 선형 회귀 또는 잘린 프로 빗 또는 로지스틱 회귀 설정 그것은 당신에게 완벽한 보증을 제공합니다 기본 매개 변수의 복구에 대해

따라서 둘 중 하나에 사용할 수있는 프레임 워크입니다 엔드 투 엔드 보증을받을 수있는 올바르게 작동하는 설정, 또는 임의의 설정에서 사용할 수 있습니다 SGD 기반 프레임 워크이지만 실행할 수 있습니다 물론 여기 신경망이 있다면 당신은 엔드-투-엔드 보증을 잃을 것입니다 하지만 최소한 알고리즘을 실행할 수 있습니다 결과를 이전 작업과 비교하십시오 계량 경제학 통계에는 잘린 또는 검열 된 회귀에 대한 통계 선형 또는 프로 빗 및 로지스틱

이 작업의 기술 병목 현상은 두 가지입니다 이 기술적 인 문제는 높은 치수 설정에서 발생합니다 첫 번째는 알고리즘입니다 사용자가 비효율적이며 중요한 것은 수렴 률 이 방법은 차원에 나쁜 의존성을 가지고 있습니다 당신은 루트 n 요금보다 이것을 얻을 최대한의 가능성을 기대하고 그러나 비율의 의존성 차원이 잘 이해되지 않았습니다 우리가 얻는 것은 최적의 요금을 얻는 것입니다

즉, 잘리지 않은 회귀와 동일한 비율입니다 효율적인 알고리즘을 얻습니다 우리는 임의의 절단 세트를 허용합니다 임계 값일 필요는 없습니다 기본적으로 측정 가능한 세트가 될 수 있습니다

>> 임계 값 기능에 대한 의존성은 무엇입니까? 잘림 기능에? 뭔가가 필요합니다 >> 선택 기능은 Phi 기능은 측정 가능한 기능이 될 수 있습니다 이 요금을 받으려면 두 가지가 필요합니다 하나는 표준입니다 선형 회귀가 필요합니다 경험적 공분산 행렬 소비세의 최소값에는 하한값이 있습니다

이것이 선형 회귀에 필요한 표준입니다 잘린 회귀에 필요한 추가 가정은 임계 값은 기본적으로 데이터를 삭제하지 않습니다 평균 사이처럼 일정하지 않은 확률 임계 값에 의해 제거됩니다 1 % 정도만 있다면 훈련 세트로 만들 확률이 평균입니다 이 보증을받습니다 그래서 나는 개괄적 인 기법을 설명하고 싶었습니다

이들은 일종의 대표입니다 네 >> 그래서 당신은 가정 여기서 무엇을위한 행동이 잘 릴까요? 당신은 여기에 n을 받고 있기 때문에 >> N은 숫자입니다 >> 잘 렸습니다

>> N은 성공적인 데이터 포인트 수입니다 그 동네에서 몇 명이 조사를했는지 >> 그러나 그것은 유일하게 들리지 않는 것 같습니다 결과는 소스 또는 이 Epsilon에 대한 의존성 >> Epsilon은 무엇입니까? >> 미안 그들은 단지 분수의 확률입니다 평균 데이터 포인트 일 확률 >> 네 우리는 추정하다 상수이며 표기 순서대로되어 있습니다 네

모든 데이터 포인트에 1 % 확률 관찰 창으로 만들고 충분하면 약한 조건을 얻을 수 있습니다 그러나 각 사이에는 훈련 세트로 만들 확률이 높습니다 >> 그것은 당신이 y를보기 전과 같은 상태를 의미합니다 만드는 기회가 있습니까? >> 맞습니다 네

여기이 그림을 보면 내 임계 값이 여기 있다고 나는 모든 x가 그것을 만들 확률이 높기를 원합니다 예를 들어, 여기에서 1 % 확률로 만들 수 있습니다 모든 x에는 필요하지 않지만 평균 x에는 필요합니다 >> Phi는 실제로 그 부분을 잘라낼 수 없습니다 미친 기능이 아닙니다

사용중인 임계 값 기능입니다 >> 내가 말했듯이, 그것은 측정 가능한 기능 일 수는 있지만, >> 무조건 작동하는이 속성이 있어야합니다 >> 네 >> 그러나 유효한 절단 기능은 예를 들어 가운데 행의 모든 ​​점을 제거하십시오 >> 맞습니다 수입이 줄어드는 동네를보십시오

이제 저는 보통 인간이 필요합니다 그 동네에 살 확률이 적당합니다 권리 기술에 대해 알아 보겠습니다 이 작업 라인에서 무슨 일이 일어나고 있는지를 나타냅니다 훈련 세트 제작 방식에 대한이 모델이 있습니다 최대한의 가능성을 원합니다 훈련 세트의 밀도가 얼마인지 묻고 싶습니다

훈련 세트의 밀도는 xy입니다 밀도는 여기서 샘플링해야하는 것과 같습니다 이제 관심을 제한하겠습니다 매우 기본적인 선형 회귀 모델로 선이 있습니다 가우스 법선 01이 있습니다 훈련 세트의 밀도는이 밀도입니다 가우스 밀도 곱하기 y가 잘리지 않을 확률

이 밀도를 어렵게 만드는 것은 표준화해야한다는 것입니다 정규화 z가 있습니다 파티션 기능도 있습니다 그러나 내 훈련 세트의 밀도는 이 세 가지 구성 요소와 정규화 기능 내가하고 싶은 것은하고 싶다 이 모형에서 모집단 로그 우도

이 매우 간단한 설정에서 복구하려면 세타 만 복구하고 싶습니다 따라서 로그 우도, 모집단 로그 우도는 진정한 모델 세타 스타에 대한 기대 대수의 진정한 세타 별을 가진이 밀도, 이 사람들은 파티션 함수의 로그를 뺀 것입니다 이제 파티션 기능은 세타에 따라 다릅니다 여기 스타 세타에 따라 다릅니다 자, 명백한 문제는 먼저 여기에 가능성을 우리는 D를 모른다

우리는 분포 D를 모른다 하지만 그렇게해도 우리는 계산해야 할 것입니다 이 파티션 기능은 어렵고 어렵습니다 그러나 여기서 구원의 은총은 비록 당신이 가능성을 계산할 수없고 그래디언트를 계산할 수 없습니다 여전히 확률 적 그라디언트를 얻을 수 있습니다 여전히 임의의 변수를 얻을 수 있습니다 그의 기대는 이 기능은 필요없이 D를 알고 파티션 기능을 계산하지 않아도됩니다

특히, 그래디언트가 이 인구 로그 가능성 함수 ~의 차이가되다 두 가지 기대와 정확히 같은 평등입니다 그리고보기가 어렵지 않습니다 이 로그 우도의 기울기 두 가지 기대치의 차이입니다 한 가지 기대는 이 표현의 진정한 모델, 세타 스타 다른 기대는 그래디언트를 계산하려고하는 세타

특히 그라디언트의 권한을 얻으려면 그래도 그라디언트는 내가 모르는 사람을 제거합니다 이 남자의 그래디언트는 저에게이 용어를줍니다 주장은 어렵지 않습니다 세타에 대한이 사람의 기울기가 z는 세타에 의존하고 이 기대입니다 보기 어렵지 않고 매우 그라디언트의 표준 파티션 함수는 예상입니다

특히 모든 것은 두 가지 기대치의 차이입니다 한 가지 기대는 실제 모델의 샘플에 대한이 변수 그리고 다른 기대는 동일한 기능이지만 샘플에서 특정 세타에 대한 모델 그라디언트를 계산하는 곳 그래 확률 론적 경사 하강을하고 싶습니다 이 관찰을 사용합니다 >>이 기차는 이것은 진정한 [들리지 않음]에서 온다 [들리지 않는] 세타 열차는 xy 부모의 분포 이렇게 내림차순 실제로 d의 x를 사용해야합니다

>> 아니요, 실제 샘플이 있습니까? 그래서 나는 중 하나를 선택할 수 있습니다 내 훈련 샘플은 이미이 모델의 샘플입니다 그러나 p 세타 열차는 세타 스타의 기능입니다 옳은 나는 그것이 진실이라고 본다 괜찮아

죄송합니다 이것이 진실입니다 이것이 가짜와 나는 그 가짜를 시뮬레이션해야합니다 그래 이 다른 용어를 얻으려면 네

>> 그러나이 시뮬레이션은 성공적이어야합니다 잘리지 않는 잘림 때문에 그래서 나는 매우 조심해야 확률 적 그라디언트 하강을하고 있습니다 세타 스타와 아주 멀리 떨어져있는 세타에 가면 모든 것이 가능합니다 거부 샘플링을 수행하여이 모델을 시뮬레이션하겠습니다 다음을 선택하고 실행하겠습니다

내 모델을 통해 그런 다음 성공적으로 볼 수 있습니다 관찰 창으로 만듭니다 해당 프로세스가 계속해서 실패하면 해당 샘플을 시뮬레이션 할 수 없습니다 그래서 나는 더 나은 확인 내 확률 적 그라디언트가 우주에서 너무 멀리 방황하지 않고 거부 샘플링이 성공합니다 필요한 또 다른 것은 볼록성이 강해야한다는 것입니다 가능성을 작게하면 나는 또한 내가 주장 할 수 있습니다 매개 변수 거리에서 배웠습니다 우연의 가치 만이 아닙니다 이런 종류의 종합적인 결과를 얻는 데 필요한 구성 요소 하지만 거기에 신경망이 있다면 당신은 항상 할 수 있습니다 에 의해 확률 적 하강 하강 이 매우 간단한 아이디어를 활용하십시오

이 결과를 건너 뛰고 NBA 데이터 예제를 보여 드리겠습니다 2000 년 이후의 NBA 데이터입니다 이것은 농구 선수의 키입니다 2 미터 정도 가우시안이 정말 좋습니다 이들은이 플레이어가 득점 한 게임당 점수입니다

이 데이터에 대해 선형 회귀를 수행하면 나는 그것이 옳은 일이라고 주장하지 않습니다 그러나 만약 당신이 선형 회귀를한다면 게임당 포인트 수를 높이기 위해 이 감소하는 음의 경사 곡선을 얻습니다 여기 제가 할 멋진 테스트가 있습니다 따라서이 데이터를 더자를 것입니다 그래서 나는 선수를 볼 것입니다 게임당 최소 8 점을 얻습니다

이 데이터입니다 자 이제 절단에서 잘립니다 그래서 내가 순진하고 선을 맞추려고하면이 선을 얻습니다 내가 한 사실을 고려하지 않으면 게임당 8 점 이상 잘림 양의 경사 곡선을 얻습니다 최소 제곱 법을 사용하면 그러나 내가 고려하면 8 점에서 잘렸다는 사실은 부정적으로 줄을 바꾸겠다

이것은 생각의 이점입니다 사실에 대해 데이터에서 이미 일부 잘림이 발생했습니다 이것은 확실히 당신이 할 줄이 아닙니다 이것이 데이터 세트라고 생각하면 적합합니다 하지만이 데이터 세트가 다른 데이터 세트를 잘라서 생성 한 이 라인은 이제 의미가 있습니다 이것이 최대 가능성입니다 시간이 얼마 남지 않았습니다 하지만 다른 유형의 잘림 통계에 대해 설명하겠습니다

성별 예측 이야기에 더 잘 맞는 문제 1 분 남았 어? >> 네 >> 내 타이머에 따르면 이 설정에서 내가하고있는 일은 세계가 다음과 같이 생산된다고 가정하십시오 기본 분포 D가 있습니다 이미지와 라벨을 샘플링합니다 그러나 알려지지 않은 메커니즘이 이미지를보고 결정합니다

포함 여부 내 훈련 세트에서 그 이미지와 레이블 특히, 예를 들어 나에게 알려지지 않은이 파이가 경주를보고 피부톤 등 그 사람의 결정에 따라 인터넷에 해당 이미지를 게시할지 여부 훈련을 위해 나에게 줘 이와 같은 필터 데이터가 주어지면 그리고 그것은 우리가 가정하는 여분의 것입니다 내가 관심있는 테스트 인 큰 테스트 세트가 주어졌다 편견이있는 훈련 세트가 있습니다

또한 바이어스되지 않은 테스트 세트가 있습니다 그러나 테스트 세트에는 모든 종류의 사람들의 이미지가 있습니다 이들은 실제로 라벨링에 관심이있는 이미지입니다 편향되고 레이블이 지정된 데이터 세트를 제공한다고 생각합니다 그리고 편견이 있지만 레이블이없는 테스트 세트를 제공하고 있습니다

내가하고 싶은 것은 하는 성별 분류기 편견없는 분포에서 >> [들리지 않음]이 경우 왜 중요하지 않아야 하는가 [알아들을 수 없는]? >> 당신은 일종의 중요한 [들리지 않음]을해야합니다 문제는 이제 기준을 모른다는 것입니다 적의 결정에 따라 데이터 세트에 이미지를 포함할지 여부 이 경우 당신은 필터링을 모른다 >> 가정이 [들리지 않음]? >> 절차 가정은 당신이 주어진다는 것입니다 레이블이 지정되고 편향된 데이터 세트, 레이블이 지정되지 않은 및 바이어스되지 않은 테스트 세트 그래서 당신은 배워야합니다 이 필터링 절차를 기반으로하여 그 가능성을 바탕으로 우리가 제안하는 최대 가능성 설정은 그리고 그것은 몇 가지 대안입니다 다른 도메인 적응 접근법

여기에 한 가지 예가 있습니다 그와 함께 마무리하겠습니다 여기에서 우리는 다음 실험을했습니다 이미지도 찍었고 아주 좋은 성별 분류기 성별 분류 기가 실패한 이미지를 살펴 보았습니다 이것들은 하드 메일 이미지입니다

그래서 이것은 정말 좋은 성별 분류 기가 실패하는 곳입니다 성공적인 남성 이미지입니다 이것들은 실패한 딱딱한 여성 이미지입니다 이것들은 실패하지 않는 쉬운 여성 이미지입니다 그래서 우리는 아주 좋은 성별 분류기를 사용했습니다

우리는 그것이 실패한 곳을 살펴 보았습니다 그리고 실패하지 않는 곳 우리는 주로 데이터 세트를 만들었습니다 하드 이미지를 포함하고 쉬운 이미지가 거의 없습니다 우리는 이것을 성별 분류기로 설정 한 훈련으로 제공합니다

이제 순진한 경우 해당 바이어스 데이터 세트를 학습하면 남성과 여성의 역할이 천천히, 반대로 바뀌어 당신은 무작위 추측에서 시작 천천히 악화되고 편향되지 않은 데이터 세트가 더 나쁩니다 뒤집힌 세계를 배우기 때문입니다 절단이 가능하다는 점을 고려하면 [들리지 않음]에서 복구 할 수 있습니다 그래서 이것은 제가 말하고 싶은 또 다른 것입니다 밀도를 배우는 비지도 학습 문제

>> 이것을 가지고 죄송합니다 따라서 이것은 편향되지 않은 데이터 세트에서 정확성의 가능성입니다 >> 맞습니다 예 >> 당신은 여전히 ​​[들리지 않음]에 비해 매우 나쁜 일을하고 있습니다

[들리지 않음]에서 55 %가 정확합니다 >> 네 우리는 천천히 개선되고 있습니다 >> 어쩌면 당신은 그것을 얻을 수 있습니다 >> 아직 포화되지 않았습니다 예

결과가 있습니다 비지도 학습, 학습 밀도 다시, 우리가 얻는 것은 학습을위한 최적의 요금 함수로서의 가우시안 및 지수 패밀리 데이터의 차원 그러나 요약하자면, 학습자가 제가 제시 한 사례를 연구하면서 센서 사용 방법 더 이상 사용되지 않는 통계로 들어가는 편견 제거 트레이닝 세트가 대표적이지 않기 때문에 알고리즘의 조건 앞으로 만날 것입니다 강건한 것을 배울 수있는 방법 사실 데이터 세트를 얻는 방법에 대한 선택 편견? 우리는 다시 신경망에 작동하는 일반적인 프레임 워크를 가지고 있습니다 SCD를 기반으로합니다 그러나 엔드-투-엔드 보증을 받으려면 통계에서 몇 가지 오래된 문제에 대한 정보를 제공 할 수 있습니다

특히, 잘린 선형 회귀 프로 빗 물류 및 가우시안 학습은 가우시안을 잘랐습니다 그게 다야 고맙습니다 >> 알겠습니다 암시? 슬라이드로 돌아갈 수 있습니까 당신은 Y에 의해 잘린 농구를 어디에? >> [들리지 않음] 그림이 기억납니다 네

>> 우리가 전에 본 훨씬 간단한 알고리즘이 있기 때문입니다 >> 네 어느 것입니까? >> [들리지 않음] >> 잘린 선형 회귀는 오래된 문제입니다 해결되지 않은 통계에서 >> [들리지 않음]은 엡실론이 대칭이라는 것입니다

그리고 나는 반영하고 싶습니다 당신의 걱정되는 추정치보다 낮은 점수 >> 작동하지 않습니다 왜냐하면 그들 모두를 반영 할 수는 없습니다 당신은 어디에 선을 모른다 >> 아니요 모두 반영하지 마십시오

>> 당신이 줄을 알고 있다면 >> [들리지 않음] 반영 간단 해 >> 라인이 어디에 있는지 알고 있다면 작동합니다 그러나 당신은 선이 어디에 있는지 모른다 >> 아니오, [들리지 않음]

>> 우리는 좋은가요? >> 알겠습니다 다음 단계는 스탠포드의 Tengyu Ma가 있습니다 >> 내 말 들려? 이 작동합니까? 괜찮아 그래서 얘기 할게요 초기의 큰 학습률의 정규화 효과에 대해 Yuanzhi Li와의 공동 작업입니다 누가 스탠포드에 아직 기술적으로 있다고 생각하지만 그는 직업을 위해 CMU에갑니다 스탠포드의 학생 인 콜린 웨이 저는 Tengyu Ma입니다

정규화에 대해 이야기하겠습니다 그러나 원래 동기 이 프로젝트의 가장 빠른 알고리즘에 관한 것입니다 2 년 전에는 1 년 동안 Facebook에 가입하기로 결정했습니다 나는 내가 원하는 것을 생각하고 있었다 딥 러닝을 위해 경험적으로 더 빠른 알고리즘을 설계하십시오 아마 3 년 전에 우리는 [들리지 않음]과 다른 많은 협력자들과 이론적으로 다른 것을 원했다 볼록하지 않은 문제에 대한 빠른 알고리즘

나는 깊은 모델을 위해 이것들 중 일부를 시도해야한다고 생각하고있었습니다 그런 다음 조금 시도했지만 작동하지 않았습니다 그리고 나는 우리 모두가 흥미롭게도 더 빠른 훈련을 원한다면 그렇게 어렵지 않습니다 그래서 당신이해야 할 일은 사용하는 것입니다 학습률이 낮고 매우 쉽습니다 따라서 이것은 더 빠른 훈련을 제공합니다

그러나 테스트 정확도는 그렇지 않을 것입니다 큰 학습 속도만큼이나 좋습니다 여기 2 년 전에 제가 만든 음모가 있습니다 형식을 변경할 수 없어서 더 이상 Facebook 클러스터에 액세스 할 수 있습니다 이것을 전달하겠습니다

주황색은 훈련이고 초기 학습 속도가 001 인 알고리즘의 테스트 이 경우 001은 작은 것으로 간주됩니다 녹색은 초기 연간 비율이 01 인 알고리즘의 곡선 이것은 큰 학습률로 간주됩니다

훈련 측면에서 볼 수 있습니다 점선은 훈련 곡선이고 훈련 성과는 많이 작은 학습률 하나에 더 좋습니다 그러나 주황색 테스트 성능이 시작될 때 학습률이 낮을수록 좋습니다 수렴 후 하루가 끝나면 어떻게 든 녹색이 주황색을 이깁니다 더 오래 실행하면 당신은 주황색이 따라 올 수 있다는 것을 결코 보지 못합니다 어떻게 든 본질적으로 큰 학습률로 여기에 무슨 일이 일어나고 있습니다

큰 학습 속도는 우리가 하루가 끝나면 규칙적으로 우리는 더 나은 테스트 정확도를 가지고 있습니다 따라서 테스트 정확도를 얼마나 빠르게 수렴하는지에 대한 것이 아닙니다 이것은 실제로 최종 정확도에 관한 것입니다 학습률이 높을수록 훨씬 좋습니다 학습 속도가 작은 것보다 조금 낫습니다

여기에는 1 % 만 개선되었습니다 다른 쪽의 데이터와 설정에 따라 다릅니다 여기서 개선은 단지 1 %에 불과합니다 우리는 모든 데이터를 사용하고 있기 때문에 아키텍처 및 정규화와 같은 따라서 많은 개선을 기대할 수는 없습니다 그러나 예를 들어 논증이 없다면 격차가 매우 크다는 것을 알 수 있습니다

어떤 의미에서 우리가 볼 수 있기 때문에 이것은 정말 좋은 알고리즘이 정규화 될 수 있기 때문에 새로운 현상이 발생합니다 [들리지 않음]에 대해 이야기 한 것 같습니다 그것과 많은 다른 사람들에 대해 이야기했다 정규화 효과 알고리즘 정말 신나 네요 새로운 연구 방향이 많이 열립니다 그러나 반면에 걱정은 적어도 병목 현상은 우리는 정규화 효과를 이해하지 못한다 알고리즘의 최적화 알고리즘으로 디자인하는 방법을 모릅니다

더 빠르게 실행되는 더 나은 최적화 알고리즘을 찾을 수 있습니다 하지만 정규화를 이해하지 못하면 결과는 내가 그것을 실행하는 것입니다 실제 데이터 세트와 일반화는 좋지 않습니다 레온과 얘기 했어요 페이스 북의 어느 시점에서 이것에 대해 레온이 말 했어요 실제로 그들은 아마도 20 년 전에 이것을 시도했고 2 차 알고리즘이 더 빠르게 변경 될 수 있음을 발견했습니다 그러나 일반화는 크지 않습니다 아마 이것은 아마도 많은 논문들이보고 한 것처럼 나 자신에 의해 만들어졌습니다

나는 그 신문을 읽는 데 시간이 오래 걸렸다 그래서 내가 스스로를 발견했습니다 그러나 실제로 그들은이 효과를 훨씬 더 일찍보고합니다 그래서 우리의 주요 질문 이 대화에서 부분적으로 답변을 시도 할 수 있습니다 초기 학습 속도가 큰 이유가 일반화에 도움이되는 이유 이걸 이해하면 향후 최적화를 통해 설계 할 수 있습니다

생각해 보면 그렇게 간단하지 않습니다 중요한 것은 여기에 초기 학습 속도가 어떻게 든 있습니다 초기 학습 속도가 달라지기 때문에 이 분석은 다소 역사에 민감해야합니다 따라서 알고리즘 분석은 알고리즘의 시작 단계에서 일어나는 일에 대해 이것은 찾기가 쉽지 않다는 것을 의미합니다 이러한 현상을 볼 수있는 간단한 설정입니다

예를 들어 선형 모델로 작업하는 경우 선형 모델은 우리는 거의 확실하다고 생각합니다 선형 모델에는이 속성이 없습니다 우선, 정규화를 사용하면 이는 볼록한 문제입니다 따라서 어떤 알고리즘을 사용했는지는 중요하지 않습니다 따라서 정규화 효과가 없습니다 정규화가 없으면 사용중인 법률에 따라 물류 법을 사용한다면 그의 곡선 대 논문이 그것의 반복이 전통에 의존하지 않았다는 것을 보여주었습니다

최종 학습률에만 의존합니다 대략 제곱 법이 법칙이라면 나는 같은 일이 일어난다 고 생각합니다 여기 모든 것이 볼록하기 때문에 우리는 반복을 이해하고 매우 확신합니다 그런 현상이 없다고 초기 학습 속도에 대해 종종 최종 학습 속도가 중요합니다 때로는 초기화가 약간 중요합니다 초기화하는 경우 데이터에 대한 직교 부분 공간 거기서 아무것도 바꾸지 않을 것입니다

그래서 초기화가 약간 중요합니다 또한이 문제를 연구하기위한 또 다른 어려움은 당신은 단지 할 수 없습니다 같은 이유로 제한 행동에 대해 이야기하고 중요한 것은 끝이 아니기 때문에 그래서 당신은 어떤 학습 속도를 사용합니다 따라서 우리는 T를 무한대로 취할 수 없으며 확률 론적 과정의 제한적인 행동 연구 NTK도 여기서 실제로 도움이되지 않습니다 NTK가 꽤 많기 때문에 커널 공간에서 볼록 최적화 된 선형 모델 첫 번째 범주에 속합니다

우리가 여기서하는 일은 장난감 데이터 배포 이 장난감 데이터 배포를위한 두 개의 신경망의 경우 우리는 실제로이 현상을 보여줍니다 발생하는 이유는 SGD는 다양한 패턴을 배웁니다 학습 속도 일정이 다른 여러 가지 순서로 따라서 선형 요율표가 중요한 것은 다른 순서로 다른 패턴을 배우고 다른 것들이 다르기 때문에 우리는이 결과를 볼 수 있습니다 마지막에 다른 일반화 성능 우리가 말하는 패턴의 유형은 무엇입니까? 우선, 나는 단지 생각 할거야 이론적으로 이것을 분석 할 수있는 데이터 분포 하지만 처음에는 더 큰 그림을 드리겠습니다 우리가 이미 어떤 종류의 건축을하려고하는지 우리는 두 가지 패턴을 만들 것입니다 첫 번째 단계 패턴은 우리는 일반화하기는 쉽지만 맞추기 쉬운 패턴이라고 부릅니다 예를 들어이 설정에서 선형으로 분류 가능한 패턴으로 생각할 수 있습니다

따라서 선형 모델 만 필요하므로 적합합니다 이러한 데이터에 적합한 매우 간단한 아키텍처 하지만 같은 치수 번호가 필요합니다 일반화 할 데이터 포인트 이것이 우리가 일반화하기 쉽지만 맞추기 쉬운 것입니다 다른 유형의 패턴 비교는 일반화하기 쉽고 적합하지 않은 패턴입니다 우리는이 구체적인 예제를 여러분이있는 곳에서 사용할 것입니다 예를 들어 클러스터 데이터입니다

제가 말했듯이 데이터 포인트는 세 그룹으로 묶여 있습니다 이 세 그룹이 배웁니다 이것들은 긍정적 인 예이며 중간에 있습니다 부정적인 예가 있습니다 이 경우 분리 할 선형 구분 기호를 사용할 수 없습니다 세 군집이 동맹하기 때문에 선형 분류 기가 없습니다

그래서 우리는 당신이 필요하기 때문에 맞추기가 어렵다고 말합니다 그러한 데이터에 적합하도록 적어도 2 계층 네트워크 그러나 그것들은 매우 밀집되어 있기 때문에 실제로 일반화는 쉽습니다 2 계층 네트워크가 필요하더라도 당신이해야 할 유일한 것은 세 가지 요점을 거의 암기하기 위해 클러스터의 세 중심 기본적으로 세 가지 예를 보면 완벽하게 일반화 할 수 있습니다

따라서 복잡한 모델이지만 일반화 할 샘플은 거의 없습니다 이것들은 우리가 이야기 할 두 가지 유형의 패턴입니다 우리는 학습 순서를 보여줄 것입니다 그런 문제에 분포는 다른 유형의 패턴을 가지고 있습니다 그래서 여기에 방법이 있습니다 패턴이 혼합 된 장난감 분포를 구성합니까? 따라서 데이터 포인트에는 좌표의 두 가지 하위 집합이 있습니다 좌표의 첫 번째 부분 집합을 x1이라고합니다

차원이 d이고 좌표의 두 번째 하위 집합도 치수입니다 디 우리는 세 가지 유형의 예제를 구성 할 것입니다 이 데이터 세트는 이기종입니다 따라서 첫 번째 유형의 예제는 질량의 20 %입니다 이 예제의 20 %는 x1, 0 형식입니다

두 번째 특허는 존재하고 우리는 첫 번째 패턴 만 가지고 상기 제 1 패턴은 상기 제 1 패턴으로부터 생성되며, 선형 적으로 분류 가능한 패턴 타입 2 예제는 또한 질량의 20 %를가집니다 그들은 첫 번째 패턴이 없을 것입니다 첫 번째 좌표 세트에서 그리고 두 번째 좌표 세트는 후반 패턴 클러스터링되었지만 선형으로 분리 할 수없는 패턴 세 번째 유형의 예 나머지는 두 가지 패턴이 있습니다 그래서 우리가 걱정하는 이유 이 이기종 데이터 세트를 사용하면 학습 순서가 차이를 만드는 것을 볼 수 있습니다 두 알고리즘을 비교해 보겠습니다

첫 번째 알고리즘은 첫 번째 유형의 먼저 패턴을 만든 다음 두 번째 패턴을 배웁니다 기본적으로 먼저 패턴 1을 배우고 패턴 1을 어떻게 배우나요? 기본적으로 1 번 예제를 입력하고 3 예제는 x1을 모두 가지고 있습니다 패턴 1을 배우기 위해 모두 사용할 수 있습니다 질문? >> 패턴 1은 선형으로 만 분류 할 수 있어야합니다 또는 클러스터가 잘 구성되지 않은 고 분산을 원하십니까? >> 타입 I의 경우, 우리는 그것들이 높은 분산을 원합니다

정확한 구성에 대해 이야기하겠습니다 기본적으로이 두 가지를 절반 가우시안으로 최소한 일반화 할 샘플 수를 요구합니다 >> X와 원의 의미는 무엇입니까? >> X는 양수 샘플입니다 원은 음성 샘플입니다 >> X1에도 라벨이 포함되어 있습니까? [들리지 않음]과 함께 제공되는 [들리지 않음] 외부 레이블

>> 네 이와 관련된 레이블이 있습니다 다음 슬라이드에서는 더 정확할 것 같습니다 여기에 아주 빨리 설명하기 위해 제 X1은 패턴 1에서 생성되었습니다 나는이 배포판에서 X1과 레이블을 함께 결합한다는 것을 의미합니다 >> 라벨이 X1 안에 있거나 [들리지 않음]입니까? >> 레이블은 기술적으로 표기법으로 X1 외부에 있습니다

네 >> X1 내부? >> 외부 >> 외부 >> 네 기술적으로 패턴 1에서 생성 된 X1, Y를 작성해야합니다 >> 알겠습니다

>> 네 >> 세 번째 유형으로 말할 때 X1에서 X3까지 두 개의 레이블이 있습니까? >> 하나의 레이블이 있고 연결되어 있습니다 따라서 X1과 X2는 동일한 레이블에서 생성됩니다 >> 알겠습니다 >> 레이블에 나열한 다음 X1 및 X2를 생성 할 수 있습니다 다음 슬라이드에서 더 명확해질 것입니다

괜찮아 학습 순서로 돌아갑니다 따라서 이기종 데이터 집합이 있다면 패턴을 먼저 배우고 싶다면 그러면 무슨 일이 일어나는지 사용해야합니다 패턴 1을 가진 모든 예제는 패턴 1을 학습합니다 기본적으로 Type을 사용합니다 I 및 Type III 데이터가있는 곳 X1에 있고 가장 적합한 선형을 찾습니다 패턴 2를 배울 수 있습니다

패턴 2를 배울 때 우리는 단지 나머지를 사용합니다 패턴 2 만있는 예제의 20 % 따라서 알고리즘 2의 순서는 다릅니다 여러분이하는 일은 먼저 패턴 2를 배우는 것입니다 최고의 비선형 피팅을 찾는 곳 패턴 2를 가진 모든 예에 패턴 2가있는 예는 무엇입니까? 유형 II 및 유형 III 예제는 패턴 2를 갖습니다 그런 다음 나머지를 배웁니다 이제 남은 예제의 20 % 만 남았습니다

모든 유형 II 및 유형 III 예가 이미 완벽하게 맞습니다 따라서 예제의 20 % 만 있습니다 왼쪽 이들은 유형 I 데이터입니다 기본적으로 차이점은 학습 패턴 1과 관련하여 여기 첫 번째 알고리즘에서 우리는 80 %를 사용합니다 패턴이 1 인 데이터의 두 번째 경우에는 데이터의 20 % 60 %의 나머지 패턴 2를 배우는 데 사용되었으며 정확하게 맞습니다 더 이상 사용할 수 없습니다

이 비율이 작을수록 [들리지 않음]이 발생합니다 당신은 거기에 볼 수 있습니다 일반화 측면에서 차이가있다 여기서 일반화는 데이터의 80 %를 사용하고 있기 때문에 더 좋습니다 그리고 여기서 일반화는 더 나빠질 것입니다 데이터의 20 % 만 사용하고 있기 때문입니다 여기서는 학습 패턴 1에 대해서만 이야기하고 있습니다 학습 패턴 2는 항상 좋습니다 패턴 2는 배우기 쉽기 때문입니다

패턴 2를 배우려면 세 가지 예만 있으면됩니다 그래서 그것은 질문에서 벗어났습니다 따라서 두 예제 모두 패턴 2를 매우 잘 배울 수 있습니다 기본적으로 제가 보여 주려고하는 것은 이 큰 학습 속도 플러스 어닐링은 알고리즘 1을 수행 할 것입니다 정확히이 두 가지를 할 것입니다

전체적으로 작은 학습 속도는 알고리즘 2를 수행합니다 그래서 알고리즘 1과 알고리즘 2가 작은 학습 속도와 큰 학습 속도 일반화 성능에 차이가있을 수 있습니다 패턴 1의 일반화 성능이 다릅니다 그것들은 다른 수의 예에서 배운 것이기 때문입니다 지금까지 질문 있나요? 따라서 이것은 단지 높은 수준의 계획입니다

어떻게하는지 좀 더 말해 줄게 우리는 이것을 정확하게 구성하고 증명했습니다 또한, 우리가 온전한 지 여부를 확인합니다 여기에서 분석과 관련하여 역사에 의존하는 우리는 물류 손실을 사용하기 때문에 그렇게합니다 기본적으로 일어나는 일은 큰 학습 속도와 어닐링을 사용하면 먼저 패턴 1을 배우고 이제이 데이터를 모두 사용한 후 물류 손실을 사용하고 있기 때문에 샘플이 적합하면 자신감 때문에 너무 높고 그래디언트가 너무 작아서 다른 용도로는 절대 사용할 수 없습니다 적어도 오랫동안 당신은 사용할 수 없습니다 자신감이 돌아 오지 않는 한 그래서 당신이 몇 가지 예를 배운 후 물류 손실을 잘하면 더 이상 사용할 수 없습니다

그래서 여기에 패턴 1을 배우면 사용할 수 있습니다 패턴을 배우는 예제들 여기서도 마찬가지입니다 이것이 역사의 의존성에서 비롯된 것입니다 >> [들리지 않음] 의존성, [들리지 않음] 수정 가능 이 예제의 문제 당신은 일정한 학습 속도를 가질 수 있습니다 탈락 또는 그와 비슷한 것 >> 물론입니다

우리는 몇 가지 완화 전략을 가지고 있습니다 [들리지 않음]에 매우 가깝습니다 그래서 나는 대화가 끝날 때 완화 전략에 대해 이야기하고 이것은 인공적인 실제 데이터 셋을 보여주는 실험입니다 이런 현상도 볼 수 있습니다 인공 인공 데이터 세트 용 우리가 증명할 수있는 것은 장난감 케이스입니다

여기 좀 더 현실적인 경우입니다 여전히 또 다른 실제 데이터 세트입니다 하지만 좀 더 현실적입니다 데이터 셋을 생성하는 방법은 다음과 같습니다 아이디어는 우리는 실제 데이터 세트에서 이 쉬운 패턴과 어려운 패턴이 있습니다

이 두 가지 패턴을 좋아하지만 찾을 수 없었습니다 적어도 우리는 아직 그것들을 찾는 방법을 모른다 우리가 한 일은 기존 이미지의 모든 패턴에서 그것들은 타입 I 패턴이고 우리는 타입 II 패턴을 주입합니다 일반화하기 쉽지만 적합하지 않은 패턴 우리는 어떻게합니까? 그래서 기본적으로, 이 워터 마크를 CIFAR 이미지의 중간에 추가하면 이것은 타입 II 패턴입니다

기본적으로 모든 클래스에는 정확히 두 개의 패치가 있습니다 이 두 패치는 해당 클래스와 정확히 연관되어 있습니다 두 패턴을 보면 그들이 어떤 클래스인지 정확히 그리고 당신은 방금 주사 해당 클래스의 모든 이미지에 대한 두 패턴 중 하나입니다 기본적으로 두 가지 패턴이 있습니다 각 클래스 I에 대해 V와 VI 프라임 클래스 I 예제의 VI 소수

우리는 같은 타입 I을 사용합니다 유형 II 및 유형 III 구성 예제의 20 %에는 패치가 없습니다 예제의 20 %에는 패치 만 있습니다 따라서 실제 이미지조차 없습니다

중간에 패치 일뿐입니다 배경이없고 60 %의 예제가 혼합되어 있습니다 이제 데이터 세트가 있고 실험을 실행할 수 있습니다 큰 학습 속도와 작은 학습 속도로 우리가 어떤 종류의 패턴을 배우고 있는지보십시오 >> 20 %는 단지 [들리지 않음]입니다 >> [들리지 않음]에서 나는 단지 깨끗한 이미지를 생각합니다

네 이제 우리는이 큰 열거 형과 작은 열거 형을 실행합니다 이 [들리지 않음]의 예를보고 싶습니다 먼저 패치를 배우 든 실제 이미지를 먼저 배우 든 이 경우 패턴이 무엇인지 알기 때문에 이러한 패턴의 학습 순서는 무엇인지 조사 할 수 있습니다 나는 녹색을 무시하도록 요청할 것입니다 이것이 실제로 완화 전략입니다

파란색과 빨간색에 중점을 두겠습니다 따라서 파란색은 큰 열거 형 어닐링입니다 이것이 우리가 에포크를 어닐링하는 지점입니다 30과 초록색은 전체적으로 더 작은 열거 형입니다 나는 녹색을 무시하도록 요구할 것입니다 빨간색은 전체적으로 작은 열거 형입니다 깨끗한 정확성을 볼 때 깨끗한 예, 파란색의 정확도

큰 열거 형과 어닐링 전체적으로 좋은 정확성을 얻습니다 그러나 깨끗한 정확성 작은 열거 형이 아닙니다 큰 열거 형의 깨끗한 정확도만큼 좋습니다 이것은 우리의 설명에 따릅니다 이것은 당신이 사용하지 않기 때문입니다 깨끗한 패턴을 배우기에 충분한 샘플 열거가 작은 패턴 1 더 유익한 정보 일 수도 있습니다 패치 정확도를 보면 여기에서 우리가 의미하는 것은 분류기에 패치하고 정확성을 확인하십시오

이것이 여러분이 배우는 양을 측정하는 것입니다 패턴 2를 얼마나 사용하고 있습니까? 패치, 분류합니다 이제 이것은 매우 분명합니다 당신이 작은 열거 할 때 그래서 패치를 매우 빠르게 배워야합니다 패턴 2는 매우 배웁니다

다섯 시대에 아주 빨리 그러나 큰 열거 형을 사용하면 패턴 2와 [들리지 않음]을 배우지 않을 것입니다 기본적으로 큰 열거 형으로 당신은 단지 무시하지 않을 것입니다 당신이 중간에 패치 어쨌든 이것이 가짜 연습임을 감지하십시오 >> 정확한 정확성에 대한 정의는 정확히 무엇입니까? >> 임의의 깨끗한 예제에 모델을 적용하기 만하면됩니다 >> [들리지 않음]없이

>> 수정없이 >> 동일한 무조건 배포입니다 >> 네 동일한 무조건 분포 >> 알겠습니다 패치 정확도 워터 마크를 포함하고 있습니다 >> 패치 정확도는 방금 압출 된 것입니다

우리는 워터 마크와 배경이 없습니다 배경이 0으로 설정되었습니다 >> 워터 마크 만 있습니다 >> 네 >> 그것은 흰색이거나 다른 이미지와 비교됩니다 >> 예, 예 >> 알겠습니다 >> 네 그래도 여전히 올바르게 분류 할 수 있다면 기본적으로 패치를 배우고 있음을 제안합니다

실제로 이미지가 제공되지 않기 때문에 당신은 패치 만 제공됩니다 >> 당신은 그것을 모든 흰색 이미지 또는 다른 것과 비교하고 있습니다 >> 어떤 이미지가 제로 정확도를 제공합니까? >> 맞아 그러나 나는 그렇게 말하고 있습니다 패치에는 한 가지 유형의 이미지 만 표시됩니다 (들리지 않음) >> 한 가지 유형의 이미지 만 있습니다

>> 알겠습니다 >> 기본적으로 20 개의 이미지가 있습니다 모든 수업마다 10 개의 수업이 있으며 모든 수업에는 2 개의 이미지가 있습니다 이 20 개의 이미지 만 가지고 있으며 정확도가 무엇인지 살펴보십시오 큰 열거 형으로 무시해야합니다

패치는 기본적으로 작은 열거 형으로, 당신은하지 않을거야 또는 당신은 패치를 매우 빠르게 배울 것입니다 >> 왜 각 수업마다 두 개의 패치가 있습니까? 클래스 당 하나의 패치 만 있으면 [들리지 않음] >> 그렇다면 선형으로 분류 할 수 있다고 생각합니다 패치가 필요합니다 대칭 위치이므로 패치는 선형으로 분리 할 수 ​​없습니다 이것은 또한 우리의 건설에도 있습니다

나는 우리가 하나의 패치를 시도했지만 작동하지 않았다고 생각합니다 마지막으로 배운 것은 패치와 학습 패치에는 이미 깨끗한 이미지가 일반화되어 있습니다 올바른 곡선으로 패치를 매우 일찍 배우고 그러나 당신은 두 번째 패턴을 잘 배우지 못합니다 괜찮아 아마 10 분 정도 걸렸을 것 같아 10 분 미만 >> 6 분 미만

>> 6 분 괜찮아 그럼 아마도 나는 아주 빨리 갈 것이다 사실 여기서 너무 많이 말하지는 않습니다 기본적으로 이것은 정확한 구성입니다

그래서 여기에 올바른 표기법을 사용하고 있습니다 나는 x1, y를 생성 할 것입니다 분포 p와 분포 p 패턴 1은 선형으로 분리 가능 약간의 마진을 가진 가우시안의 절반입니다 정확한 [들리지 않음]은 중요하지 않을 것입니다 타입 2는 다음과 같은 두 번째 패턴에서 생성됩니다

그래서 우리는 그것들을 선형으로 분리 할 수 ​​없도록 구성합니다 방향면에서 클러스터가 있습니다 타입 3은 기본적으로 생성하는 방법을 찾는 것입니다 기본적으로 몇 개의 레이블을 사용하여 x1, y는 p이고 x2, y는 Q임을 알 수 있습니다 기본적으로 조건부 레이블 및 생성 조건부 분포에서 나온 XYS X2 데이터 조건부 레이블 그래서 이것들은 [들리지 않는] 개선 된 정리입니다

중요한 것은 이것은 거의 분류 할 수 없습니다 그래서 우리는이 두 클러스터를 선형으로 분류 할 수 없도록 레이블을 1로 지정하십시오 따라서 정리 정리를 생략 할 것입니다 진술은 내가 당신에게 말한 것입니다 난 그냥 조금 더 만들었습니다 공식적이지만 여전히 공식적이지 않은 깔개 밑의 모든 것을 쓸어 버리기 때문입니다

중요한 것은 우리가 어떤 아키텍처를 사용하려고합니다 정확히 표준 아키텍처가 아닙니다 이것이 우리가 그것을 증명할 수있는 유일한 경우이기 때문입니다 따라서 X1과 X2에서 독립적으로 작동하려면이 아키텍처가 필요합니다 어떤 식 으로든 알고리즘은 가우스 잡음으로 분석합니다 그래서 소음이납니다 잠시 후에 이야기하겠습니다

그런 다음 알고리즘을 증명할 수 있습니다 하나의 큰 열거 형과 매체 캔 작동 및 알고리즘 2가 작동하지 않습니다 많은 시간이 걸리지 않았습니다 여기서 자세히 설명하지 않겠습니다 기본적인 직관에 대해 조금 이야기하고 싶습니다 내가 생각하기 때문에 조금 아마도 여기서 가장 흥미로운 것입니다 우리가 작은 분석에서 우리가하는 일은 기본적으로 이것이 NTK라고 말하는 것입니다

NTK를 사용하면 수렴을 분석 할 수 있습니다 변환기가 얼마나 빠른지 알고 있습니다 우리는 NTK를 조금 더 연구해야합니다 우리가 배우는 패턴을 정확히 특성화합니다 흥미로운 것은 큰 열거 형에 관한 것입니다 왜 큰 열거로 배우지 않을 것입니까? 열거가 큰 패턴 2와 그 이유는 다음과 같습니다

큰 열거 형을 사용하면 소음이 매우 커서 그래디언트에서 같은 양의 노이즈가 있다고 가정합니다 큰 열거 형에 해당 반복적으로 많은 양의 노이즈가 효과적으로 발생합니다 그것은 파도가 많이 변한다는 것을 의미합니다 파도가 많이 바뀌고 소음이 크면 모델을 살펴보면 두 번째 유형의 패턴 또는이 클러스터 패턴 실제로, 당신의 모델은 할 수 없습니다 실제로 작동하는 강력한 도구입니다 실제로 모델은 동작 만 할 수 있습니다 노이즈가 클 때 선형 모델처럼

그 이유는 벡터 W가 있고 이 W는이 클러스터를 분리하지 않습니다 이 W가 이전 데이터 포인트와 같다고 가정 해 봅시다 W의 한쪽에 있습니다 즉, 활성화 패턴이라는 의미입니다 에 대해 모두 동일하게 될 것입니다 세 가지 유형의 예 또는 Z 및 세타 및 Z 및 Z + 세타 기본적으로 W 조옮김 X의 relu가 있지만 실제로 relu는 많은 작업을 수행하지 않습니다

relu는 항상 당신을 제공합니다 모든 패턴 2 예제에 대한 고정 부호 >> [들리지 않음] 다시 말하면 학습률의 선택을 잊어라 타임 스탬프의 처음 20 % 만주세요 패턴 2의 예 마지막 80 %에서 패턴 1의 예 그래서 당신은 무슨 말을하든 어떤 알고리즘이든 그렇게 할 것입니다

왜냐하면 >> 아뇨 >> 아니, 내 말은 이 경우 학습 속도는 실제로 중요하지 않습니다 >> 네 당신이 맞아요 이 경우 학습 속도는 중요하지 않습니다 하지만 우리는 알고리즘이 없다는 것을 증명할 수 없었습니다 모든 알고리즘이 나쁠 것입니다

우리는 단지 특정 알고리즘이 알고리즘이 있기 때문에 나쁘다 예제의 첫 번째 배치를 사용합니다 >> 모든 알고리즘을 말했을 때 나는 단지 학습률이 처음 20 % 만 줘도 도움이되지 않습니다 첫 번째 패턴 2와 패턴 1 >> 네 그러나 어려운 부분은 그렇습니다, 나는 동의하고 그것을 보여주기가 어렵지 않습니다 어려운 부분은 학습률 종류는 올바른 순서를 제공 할 수 있습니다 큰 알고리즘처럼 올바른 순서를 제공합니다

작은 알고리즘은 다른 순서를 제공합니다 이것이 기술적 인 어려움입니다 그래서 여기 기본적으로 큰 알고리즘을 사용하면 패턴 2를 배우지 않을 것입니다 알고리즘에서 패턴 2가 주어 지더라도 그 이유는 가중치가 너무 임의적이므로 비선형 함수로 동작하지 않도록합니다

기본적으로 뉴런은 항상 선형 함수와 같습니다 뉴런은 이와 같은 것을 만족시킵니다 이 두 점을보고 평균을 구합니다 실제로 중간 지점과 같습니다 따라서 항상 선형 함수가 있습니다

그래서 당신이 할 수없는 이유 이런 종류의 학습 패턴은 선형으로 분리 할 수 ​​없기 때문입니다 학습 속도에 근접한 경우에만 소음 수준을 줄이려고합니다 W를 볼 수 있도록 우리는 초평면을 만들 수 있습니다 이 예제 클러스터 사이에 있습니다 이 데이터 분포에 대해 비선형 모델을 가질 수 있습니다 이것이 바로 직관입니다 따라서 기술 직관을 건너 뛸 것입니다

당신이 관심이 있다면 아마도 기록 될 것 같아요 그래서 나는 추측하자 완화 전략에 대해 조금 더 이야기하십시오 따라서 우리의 이론에 따르면 학습 속도가 큰 경우 활성화 패턴에 많은 노이즈를 주입하고 일반화하기 쉬운 패턴을 배우지 못하게합니다 활성화 패턴에 노이즈가 많으면 선형 모델처럼 행동합니다 우리는 이것이 우리에게 도움이 될 수 있는지 보려고 노력했습니다

완화 전략 설계와 같은 자연 완화 전략은 사전 활성화시 노이즈를 추가하고 [들리지 않음] 부분과 같습니다 이제 녹색에 대해 이야기 할 수 있습니다 기본적으로 작은 학습 속도와 소음입니다 이제 우리는 학습률이 낮습니다 하지만 우리는 소음을 사용하여 [들리지 않는] 인공 패턴을 배우십시오

이제 노이즈가있는 녹색이 그렇지 않다는 것을 알 수 있습니다 작은 학습 속도로 인공 패턴을 배우십시오 나는 여기에 당신이 소음 수준을 알고 있다고 생각하면 배울 수 있습니다 좀 더 나은 정확도를 얻을 수 있도록 패턴 따라서 이것은 실제로 완화 전략입니다 또한 인공 패치없이 깨끗한 데이터로 시도했습니다 사실, 그것은 여전히 ​​개선에 도움이됩니다 학습률이 낮을 때의 정확도

기본적으로 여기에 실험이 있습니다 일부 WideResNet16이있는 CIFAR-10 그래서 나는 이것과 이것이 기준이라고 생각합니다 큰 학습 속도와 어닐링 이는 90 %이며 학습률은 84 %입니다 따라서 6 %의 차이가 있습니다 큰 학습 속도와 작은 학습 속도 사이 작은 학습 속도와 사전 활성화 노이즈를 사용하면 우리는 그 차이의 거의 대부분을 통해 그 차이를 회복 할 수 있습니다

그건 그렇고,이 숫자는 그렇게 높지 않습니다 여기에 데이터 제한이 없기 때문에 이 둘 사이의 간격이 6 %라는 것을 알 수 있습니다 데이터 제한이있을 수 있습니다 크고 작은 학습 속도의 격차 아마 2 % 또는 그와 비슷한 것입니다 그래서 빨리 마무리하는 것 같아요 그래서 주요 메시지 학습률이 높으면 일반화하기가 어렵습니다

맞추기 쉬운 패턴 및 작은 학습 속도 일반화하고 맞추기 어려운 패턴을 배웁니다 배우거나 배우는 모든 것 이러한 패턴은 로지스틱 손실과 관련이 있습니다 열린 질문은 실제 데이터에서 이러한 패턴을 어떻게 식별합니까? 우리는 아직 그것을하는 방법을 모른다 인공 패턴을 주입하려고합니다 그러나 실제 데이터에서 이러한 패턴을 식별하는 방법을 모릅니다

우리는 어떻게 결과를 더 많이 만들 수 있습니까? 우리가 고안 한 장난감 예제 대신 일반? 이 예제는 실제로 장난감입니다 어떤 식 으로든 우리는 그것을 증명하는 방법에 대한 아이디어를 가질 것입니다 마지막으로 마지막 슬라이드에서 적어도 일부를 공유해야합니다 알고리즘 정규화에 대한 개인적인 폭 넓은 전망 이 작품은 다소 더 넓은 범위의 알고리즘 정규화 적어도 어쩌면 나처럼 또는 우리는 더 강한 결과를 입증 할 수 없었습니다

하지만 이해하는 것 같아 알고리즘 정규화는 매우 이 장난감 예제에서도 우리가 도전하기 때문에 모든 것을 증명하기 위해 50 페이지 중 40 페이지를 사용해야합니다 또한이 장난감에 대해 명확하지 않습니다 알고리즘이 정규화하는 복잡한 측정 방법 정말 복잡합니다 어떤 의미에서는 나는 또한 적어도 우리를 끌어 들이고 싶습니다 다른 가능한 지름길을 생각하기 위해 이런 종류의 것들을 처리합니다 내가 비관적이라고 생각되는 것처럼 우리가 할 수 없었던 한 가지 측면에서 매우 큰 발전 가까운 장래에 알고리즘 정규화를 이해합니다 그러나 그것은 또 다른 경로 일 수 있습니다

약간의 속임수이지만 더 쉽습니다 우리가 할 수있는 명백한 조절기를 찾을 수 있다고 말할 수 있습니다 적어도 경험적으로 알고리즘 정규화를 가정하십시오 그래서 우리는 명시적인 조절기를 설계하고 실제 데이터 세트의 명시 적 조절기 당신이하지 않는 것을보고 희망 정규화하려면 알고리즘을 사용해야합니다 자, 이것들은 적어도 해결 이 조절기로 인해 최적화 문제가 더 빠른 알고리즘을 안전하게 설계 할 수 있습니다

나는 관심의 분리가 있습니다 난 신경 쓰면 돼 더 빠른 알고리즘이 있습니다 그러나 나는 여부에 대해 생각할 필요가 없습니다 내 정규화는 알고리즘에서 충분하거나 아닙니다 그런 다음 우리는 초기 예비 약속의 징후를 보았습니다 이 데이터 종속 정규화 중 일부를 사용합니다 그래서 이것들은 그렇지 않은 정규화입니다

매개 변수의 표준에만 의존합니다 네트워크의 다른 수량에 따라 다릅니다 예를 들어, 활성화 및 기타 사항 또한, 마지막으로하고 싶은 것은 일반적으로 나는 이질성이 의심 데이터 세트는 중요한 것입니다 그래서 우리는 여기서 볼 수 있습니다 흥미로운 현상이 발생합니다 이기종 데이터 세트가있을 때 또한, 나는 일반적으로 아마 데이터 집합에 이질성이있는 경우 실질적인 개선도 다소 쉽습니다

아마도 표준 데이터 세트 일 것 같습니다 모든 것이 멋지게 디자인되면 그래서 데이터 세트는 알고리즘 정규화에 맞게 이미 잘 조정되었습니다 그래서 여부를 확인하기가 매우 어렵습니다 명시 적 조절기는 정확도를 향상시킬 수 있습니다 예를 들어, 어떤 의미에서 불균형 할 때 우리는 명시적인 정규화가 실제로 실제 성능 측면에서 많은 도움이됩니다 이 논문은 매우 간단한 이론을 가지고 있습니다

이론처럼 수업에 대한 숙제 질문만큼 쉽습니다 그러나 경험적 성능은 많이 이전의 [들리지 않음] 부분보다 낫습니다 그게 내가하고 싶은 전부라고 생각합니다 고맙습니다

AI Institute "Geometry of Deep Learning" 2019 [Workshop] Day 1 | Session 3

>> 기조 연설을 위해 MSR에 Leon을 환영하게되어 기쁩니다 그는 소개가 필요 없습니다

몇 가지 주요 사항을 설명하겠습니다 나는 매우 행복했다 실제로 올해 튜링 상 수상자 신경망에 대한 레온의 기본 연구에 대해 90 년대 초에도 확률 적 그라디언트에 대한 대규모 학습에 대한 그의 연구 그는 항상 출발에 대한 깊은 통찰력을 가지고있었습니다 추론을 배우고 보간에서 외삽으로 그는 오늘 나에게 제목을 말해 구매 그의 기조 연설은 볼록성이 될 것입니다 그는 단지 볼록성에 대해 말해 줄 것입니다 더 이상 고민하지 않고 레온에게 가져 가라

>> 저를 초대 해주셔서 감사합니다 오늘 아침에 많은 것을 보았 기 때문에 사과하고 싶습니다 매우 세련된 대화와 방금 마무리했습니다 그래서 나는 그것이 있기를 바랍니다 내부의 무언가가 어리 석고 잘만되면 당신은 저에게 말할 것입니다 제목이 AI의 지오메트리 였기 때문에이 대화의 동기는 몇 년 전 지오메트리와 관련이 있다고 생각했습니다 2016 년과 17 년에 작성된 것 같습니다 >> 마이크 >> 마이크가 켜져 있지 않습니다

>> 마이크가 켜져 있지 않습니까? >> 작동합니다 >> 작동합니다 알았어요 우리는 출판 된 논문을 썼습니다 조금 애매하지만 남자 형제 때문에 모호하지 않아야 아이젠만 형제입니다 커널은 40 주년을 맞았습니다 지나가고 이해하려고하는 것에 대한 많은 기초 총의 토폴로지와 무슨 일이 일어나고 있는지, 우리는 매우 이상한 이론을 가지고있었습니다 단순하고 어쨌든 우리는 그 이름을 알아볼 수있을만큼 똑똑했습니다

"알라 카르 트 볼록"하지만 너무 많이 생각하지 않아서 단순하고 또한이 정리로 얻은 결과 때문에 나는 그것을 잘 찾지 못한다 지는 경계에 만족하지 않습니다 하지만 최근 몇 년 동안 신경 접선이있는 논문 및 관련 논문 신경망에서의 최적화 이 아이디어로 돌아갈 때마다 아주 간단하게 생각하기 때문입니다 적어도 그것은 내 직감을 말한다 여러분과 공유하고 싶습니다 이것이 유용한 도구인지 확인하십시오

무언가를 극도로 말하는 주장 새로운 것이지만 그것을 보는 흥미로운 방법입니다 요약하자면 문맥 최적화에 대해 이야기하겠습니다 물고 토론하다 근사 속성에 대해 말하는 것, 글로벌 최소화 및 매개 변수화 바이어스 세 번째 부분에서 그때 당신이 나에게 1 시간 슬롯을 준다는 것을 깨달았습니다 나는 무엇에 대해 이야기하려고합니다 처음부터 종이도 기하학이 또 다른 예를 제공합니다 매우 다르며 그 결과를 계속 사용할 수 있습니다 처음에는 아주 느리게 시작해야하는데 우리가 거의 증명할 수있을 정도로 간단합니다 한 가지를 제외한 모든 것이 중요합니다

배경; 저는 세련된 미터법 공간에서 일하고 있습니다 좋은 미터법 공간을 생각해보십시오 곡선은 단지 0,1이라고합시다 내 공간으로 연속하고 두 점을 연결하고 콤팩트하기를 원하기 때문에 감마 서브 트리 T라고 부릅니다 따라서 미터법 공간의 커브에는 많은 것이 있습니다

전 분야가 있습니다 메트릭 지오메트리를 사용하여 대부분 단축 할 것입니다 내가 정말로해야 할 유일한 것은 내가 필요하다는 것입니다 제한 속도 곡선은 실제로 Lipschitz를 거의 의미합니다 그것에 대한 많은 배경이 있습니다 상수 속도에 대해 말할 수 있기 때문에 커브와 일정한 측지선으로 이동합니다 이 모든 사업은 기본적으로 내가 만들면 곡선의 파라미터 T에서 약간의 움직임 미안하지만 난 그냥 할거야 두 점 사이의 거리가 너무 멀지 않다 크고 빨간 볼록도를 정의하겠습니다 곡선 군 C를 가정하고주었습니다

나는 그것이 무엇인지 압니다 그들에 대해 아무 말도 하지마 내 공간의 부분 집합은이 곡선 군과 볼록한 관계입니다 모든 쌍 x, y에 대해 하나씩 x를 연결하는 곡선이 있습니다 y로 완전히 연결되어 있습니다 기본적으로 나는 내 세트에 머무를 수 있고 다음 중 하나를 사용하여 x에서 y로 갈 수 있습니다 내 곡선과 나는 말한다 실제 함수는 모든 곡선에 대해 C에 대해 볼록합니다

곡선에 대한 F의 제한은 모든 DAB에 대해 볼록합니다 기본적으로 당신은 정상적인 볼록 함을 가지고 있습니다 첫 번째는 내 가족이 곡선은 유클리드 공간의 선분이며 이것은 정상적인 볼록 함입니다 두 번째는 비대칭입니다 나는이 볼록한 구조를 보았습니다 하나의 커브와 실제 함수는 모든 커브에서 볼록합니다

두 점을 연결하는 곡선이 여러 개인 경우 두 번째 정의가 더 까다 롭습니다 내가 유일하게하기 때문에 조금 약화시킬 수 있습니다 끝점 사이를 볼록하게 볼 수 있습니다 기본적으로 어떤 T에 대해서도 감마 T의 F는 감마 0의 F와 감마 1의 F의 혼합물 아래 그림과 같이 조금있을 수 있습니다 신경 쓰지 않을 것이고 결과는 매우 간단합니다

F가 커브 패밀리에 볼록한 효과 인 경우입니다 비용 함수 인 경우 곡선의 끝점에 대한 끝점 대류 효과 기본적으로 모든 레벨 세트는 C에 제한 속도 곡선 만 포함 된 경우 모든 지역 최소값은 세계적입니다 기본적으로 볼록성의 필수 속성은 원하는 모든 곡선이있는 설정에서 유지됩니다 말이 되나요? 이것의 증거는 매우 간단합니다 레벨 세트에 속하는 X와 Y를 입력하면 기본적으로 X의 F는 M보다 작습니다 Y의 F는 M보다 작습니다

F는 커브 패밀리에 대해 볼록한 관계이므로 안에 연결되어있는 커브가 있습니다 F F는 끝 점이 볼록하므로 나는 감마 T의 F가 1-Fx의 T + T보다 작다고 생각합니다 Y의 F와 T의 F와 Y의 F가 모두 M보다 크므로 감마 T가 내 레벨 세트에 속한다는 것을 의미합니다 따라서 레벨 세트는 연결되기 전에 경로로 연결됩니다 이제 지역 최소값에 대한 두 번째 부분입니다

나는 포인트가 있다면 로컬 최소값이라고 말했다 그런 공 공의 모든 포인트는 공의 중심보다 크거나 같습니다 모순에 의한 추론, Y가 있다고 가정 Y의 F가 X의 F보다 작도록 X를 Y에 연결하는 곡선을 만듭니다 속도가 제한되어 있어야합니다 속도가 제한되어 있기 때문에 이 속성은 Lipschitz 속성입니다 제한 속도이므로 2K 이상 엡실론을 사용하면 2K 이상의 감마 엡실론의 F가 더 큼 X의 F 인 감마 제로의 F보다 하지만 종말점 볼록성을 가지고 엄격한 불평등과 반대 불평등, 따라서 불가능합니다 그러므로 내 지역 최소의 모순은 위에있을 수 없습니다 F의 다른 지점에서의 가치 지금까지 매우 간단합니다

간단한 머신 러닝 예제를 보자 연속 기능인 X 일부 입력 공간에서 일부 출력 공간으로 부분 집합 X는 기능 군입니다 그것은 일부 세타에 의해 매개 변수화되었습니다 파라 메트릭을 쓰지 않았습니다

커널이나 물건을 갖고 싶어 손실 L을 보자 첫 번째 주장에서 볼록하고 이것은 내 모델의 출력입니다 훈련 예제, 그리고 f, 그래서 손실과 함께, 나는 2F를 가질 것입니다, 미안합니다 내 경험적 교차 함수는 f입니다 그래서 f 기본적으로 모든 기능에서 경험적 손실을 계산합니다

혼합물 만 나타내는 곡선을 만들겠습니다 함수 공간에서 직선 세그먼트 일뿐입니다 즉, 내가 지금 말할 것은 평면 볼록 인수로 얻을 수있는 것 나중에 살펴 보겠습니다 따라서 비용 함수 f는 내 곡선과 사소하게 볼록합니다

기본적으로 출력 공간에 커브를 그립니다 예를 들어 내 네트워크의 손실이 볼록하기 때문에 이것은 볼록하고 문제 없습니다 따라서 함수 군이 곡선에 대해 볼록한면이라면 정리가 적용되며 선형 모형에 적용됩니다 대포 모델의 경우에도 마찬가지입니다 그리고 공식 네트워크도 거의 마찬가지입니다

왜 거의? 내가 매우 풍부하게 패러미터를한다면 과도하게 매개 변수화 된 것이 여기에 적합하지 않다고 말해서는 안됩니다 풍부하게 매개 변수화 된 신경망 근사 특성이 좋습니다 글쎄, 당신은 내 선형 혼합물을 근사 할 수 있습니다 직선에 가까이 갈 수 있습니다 그러나 이것은 A를 증명하기에 충분하지 않습니다

B가 일반적으로 거의 A가 거의 B를 의미한다는 것을 의미하지는 않습니다 그것은 너무 좋을 것이고 이것은 커브가 유용 할 수있는 곳입니다 내 네트워크가 대략적으로 잘 될 수 있다는 것은 무엇을 의미합니까? 글쎄, 나는 단순화 할 것입니다 나는 F가 있다고 말할 것입니다 감마 세타 t

그래서 기능 혼합물에 가까운 내 가족 기본 2 차 거리 인 감마 t 기본적으로 F에서 G로가는 선을 정의합니다 기능 공간에서 내 두 기능 나는 시가를 정의하고 다른 시가 이후로 나는 그것을하는 가족의 기능을 가지고 있습니다 이 시가가 존재한다는 것을 증명하면 이것은 성가신 일입니다

할 수 없습니다 클릭 만하면됩니다 그렇게하는 페이지는 흥미롭지 않습니다 흥미로운 것은이 r 계수가 여기가 작아지면 네트워크가 커지고 근사치가 좋아집니다 그래서 나는 그것에 머물 것입니다 이제 커브 세트가 이러한 시가 모양 영역에 포함 된 모든 곡선

두 점이 있으면 시가를 그리고 이 안에있는 모든 커브는 내 커브 중 하나입니다 저는 행복합니다 이제 구성에 의해, f는 일련의 곡선에 대해 볼록하다 두 기능마다 시가 안에 곡선이 있어요 f에 속한다고 가정합니다 문제는 이 제품군과 관련하여 비용 함수 끝 점이 볼록합니까? 글쎄, 무슨 일이 일어나면 당신이 할 수있는 고정 도메인에 도메인을 바인딩 어쨌든 레벨 세트가 끝났다고 주장 매우 높은 엔드는 다른 주장과 같은 다른 주장도 있습니다

당신은 손실과 함께 일부 Lipschitz 가정을 만들 수 있음을 알 수 있습니다 기본적으로, 당신은 같은 것을 그것은 기능에 일어나고 있습니다 세타 t의 f가 f의 f보다 작다 혼합물과 약간의 quartic, 람다 t1 빼기 t 람다 Lipschitz의 제품입니다 상수와 내가 가진 L 이것을 적용하면 나는 이것을 얻습니다

부호가 잘못 되었기 때문에 강한 볼록성이 아닙니다 사실, 손실이 Mu라면 이 작업을 수행하는 대신 볼록하게 볼록하게 Mu를 추가 할 수 있습니다 t1에서 t를 빼고 Lambda가 Mu보다 작 으면 완료됩니다 그러나 그렇지 않습니다 볼록하지 않은 기능을 처리해야합니다

거의 볼록한 모양이며,들을 수 없습니다 여기의 두 번째 부분이 있습니다 내가 거의 볼록 최적화라고 부르는 정리 익숙한 곡선을 존중하기 위해 F가 볼록합니다 각 곡선에 대해 비용 함수 이와 같은 것을 만족 시키십시오 더 이상 빨간색으로 작동하지 않습니다

볼록한 검증 [들리지 않음] 지금 말할 수 있으면 증명하기가 매우 간단한 것입니다 m이 최소값보다 크면 f plus Lambda 함수의 에 등장하는 람다 그런 다음 레벨 세트가 연결됩니다 기본적으로 제한 속도, 구속 조건도있는 경우 그것은 어떤 지역 최소 세계 최소값보다 최대 감마입니다

왜 그렇게 되었습니까? 다시 매우 간단합니다 따라서 두 가지 점을 고려하십시오 레벨 설정에서 x와 y 그리고 값이 M보다 작은 것은 레벨 세트에서 az를 선택합니다 z의 f는 m에서 감마를 뺀 값보다 작습니다 아래에있는 az를 선택합니다 이제 두 개의 커브를 만들어 보겠습니다

x를 z에 연결하는 것, 또 하나의 z에서 y 사실, 그들은 같은 구조입니다 이 두 커브가 있다면 그런 다음 경로가 있고 경로가 연결되어 있습니다 이 그래프에서보다 쉽게 ​​볼 수 있다고 생각합니다 감마 제로가 x이고 감마 1이 z이면 m은 저의 레벨입니다

나는 그 선 아래에 있지 않을 것입니다 여기 빨간 곡선 아래에 있습니다 z가 x보다 충분히 낮 으면 빨간색 곡선이 모두 M 아래에 있는지 확인할 수 있습니다 따라서 x와 z 사이의 곡선은 전적으로 레벨 세트에 있습니다 마찬가지로 z에서 y까지의 곡선은 전적으로 레벨 세트에 있습니다

따라서 내가 가지고 있다는 결론에 내 레벨 세트에서 x와 y를 연결하는 경로를 찾았습니다 따라서 매우 짧습니다 예 >> 그래서이 시가를 가져 가서 이것의 모든 곡선으로 정의되는 함수 클래스 >> 내 커브 클래스는 시가의 모든 커브입니다

>> 그러나 각 열은 FT에 직접 대응합니다 그런 다음 [비가 청]에 다시 매핑하려면 어떻게해야합니까? >> 각 곡선이 해당합니다 아니요, 여러 개체가 있습니다 나는 가고있는 커브 패밀리를 가졌습니다 볼록한 개념을 원하는 방식으로 사용자 지정할 수 있습니다 사이에 선분이 아닌 내 곡선 군 두 기능은 두 기능 사이에있을 것입니다

시가에서 계속 유지되는 곡선 내 기능 군이 모델 인 것은 볼록합니다 이 곡선 중 하나가 가족 내부에 남아 있다고 말할 필요가 있습니다 내 가정 때문에 모델은 근사 특성이 우수합니다 시가 내용이 근사치 일 정도로 충분합니다 거기에 커브를 만들 수 있습니다

연속성에 대해 약간주의해야합니다 두 번째 부분은 비용 함수가 볼록한 것입니다 하나는 모든 곡선에 대한 제한이 볼록한 것입니다 따라서 특히 우리 가족의 곡선에 대한 볼록한 존중 이 볼록 함을 실제로 완화시킬 수 있습니다

엔드 포인트 볼록을 사용할 수 있습니다 나는 거의 볼록했다 말할 수있다 볼록 함은 계수 Lambda t1 빼기 t 그런 식으로 결함이 있으면 당신이 증명할 수있는 것은 레벨 세트가 연결되었습니다 Lambda를 최적으로 사용할 때까지 Lambda를 원하십니까? 예, Lambda를 원합니다 따라서 하강 알고리즘이 있다면 당신은 레벨 세트를 축소거야 하강 할 때마다 거기에 갈 것입니다 기억이 잘 나면 나는 더 큰 말했다 네트워크는 더 나은 근사치와 내 시가는 작습니다

네트워크가 커지면 이 Lambda는 더 작을 수 있고 더 작아서 전 세계 최소값으로갑니다 예 >> 다음 [들리지 않음] 증거에서 감마가 연결되어 있어야합니다 >> 예, 감마는 Lambda 여야합니다 마지막 순간에 방금 변경했기 때문에 대화에 감마가 너무 많았 기 때문입니다 여기이 감마는 람다 여야합니다

하지만이 감마 -t는 여전히 감마입니다 당신은 참조하십시오 그래서 저는 용어 문제가있었습니다 이 슬라이드는 좋지 않습니다 그러나 실제 아이디어는 여기에 있습니다

기본적으로 m 지점과 Lambda 지점은 m 이하 내가 볼록 결함과 같더라도 나는 그들을 연결 m 아래에 남아있을 수 있습니다 그런 점 하나면 충분합니다 우리가 지금 어디에 있는지 생각한다면 비교적 간단한 방법으로 신경망이 있다면 합리적인 가정을 가진 강력한 근사 특성, 괜찮은, 배달 된 세트는 원하는만큼 느리게 연결되고 CR을 원하는만큼 작게 얻을 수 있기 때문입니다 하강 알고리즘은 꽤 잘 작동합니다 지역 최소 또는 하단에 우리는 단지 시원합니다

그런 말을하는 최근 결과가 있다는 것을 의미합니다 그러나 훨씬 더 복잡합니다 그렇다면 이것으로부터 무엇을 이해할 수 있습니까? 제가 이것에 대해 이야기한다면 이 결과는 독립적입니다 친숙한 기능의 매개 변수화 이것은 중요하지 않습니다 정말로 중요한 것은 익숙한 기능이 충분히 가까이있을 수 있습니다

적절한 곡선으로 연결하거나 또는 적절한 곡선이 잘 될 수 있습니다 가족의 요소에 의해 추정됩니다 어느 쪽이 좋습니까 세타 공간에서 레벨 세트는 볼록하지 않을 수 있습니다 그들은 매우 기괴 할 수 있습니다 그러나 그들은 연결되어 있습니다

그들이 중심에 갈 때 일할 것입니다 그러나 학습 알고리즘은 Theta 공간에서 작동하기 때문에 암묵적인 편견이 무엇이든 학습 알고리즘에 있고 기본적으로 사물을 어떻게 매개 변수화하는지에 따라 그리고 세계 최소의 것들 초과 매개 변수화 된 모델로 반환됩니다 또는 일찍 할 때 어떤 솔루션이 반환되는지 그게 정말 달려있다 학습 알고리즘의 역학에 매개 변수 자체에 따라 다릅니다 어쨌든, 당신은 거의 전 세계적으로 갈 수 있다는 사실과 암묵적인 편견은 연결이 끊어졌습니다 혼합 곡선을 사용할 때 내가 지금까지 한 일입니다 어떤 곡선입니다 직선 또는 직선에 매우 가깝습니다

기본적으로 익숙한 기능이 충분한 근사 특성을 너무 밀접하게 그 기능 중 두 가지의 혼합을 나타내는 합리적인 학습 알고리즘 내 말은, 거리 물건, 결국 세계적으로 가장 가까운 곳을 찾을 것입니다 네트워크가 충분하다면 최근 결과가 많이 있습니다 실제로 베드로는 목록을주었습니다 그것들은 신경 용어와 일치합니다 신경 접선 [들리지 않음] 이 모든 최근 결과는 훌륭합니다

그들은 일반적으로 더 복잡합니다 이 일련의 논문에서 내가 아주 흥미로운 것을 발견 한 것은 프랜시스와 오 얄론 그가 주장하는 게으른 학습 신경 접선 접근이 있습니다 그가 게으른 학습이라고 부르는 것 해결책을 거치는 정권 그러나이 솔루션은 종종 그 솔루션을 일반화하지 않습니다 디커플링이 있기 때문에 이것을 볼 수 있습니다 매개 변수화와 볼록 속성의 볼록 속성 내가 가고 있다고 말할 수 있습니다 기본적으로 결과는 학습 알고리즘이 극복 할 가능성이 있음을 의미 매개 변수화 및 따르기 복잡한 수준을 설정하고 솔루션에 도달하십시오

그러나 이것이 좋은 아이디어는 아닙니다 특히, 당신이 많은 경우 소셜 공간이 큰 솔루션 과도하게 매개 변수화 된 네트워크에서 일반적입니다 그것은 또한 이상한 것과 연결된 매우 강한 모양, 학습 알고리즘은 특정 매개 변수화에 도달 할 수 있음 고려할 최소값보다 더 나은 최소값 당신은 단지 고려할 수 있었다 어떤 제약도없이 반대 의견을 제시합니다 이제 이것은 문제에 따라 결정될 것입니다 매개 변수화가 실제로 문제와 관련이 없는지 여부 따라서 우리가 가질 수 있습니다 대신 좋은 해결책을 제시 할 암묵적 편견 기본적으로 솔루션의 여전히 달성 가능합니다

특정 문제 여야합니다 또는 다른 곡선을 사용할 수 있습니다 다른 커브를 사용하는 것은 어떻습니까? 예 >> 우리가 다시 갈 수있는 곳이 있습니까? 자연스러운 그라디언트를 암시하는 것으로 생각하십니까? >> 자연스러운 그라디언트는 약간 다릅니다 당신이 고려하는 자연적인 그라디언트 매개 변수화 된 공간, [들리지 않는] 공간

그래서 당신은 밖을 보지 않습니다 여기서는 전체 공간에 지오메트리를 정의하지 않습니다 함수를 정의한 다음 모델의 하위 세트를 정의합니다 볼록 속성이있는 모델의 하위 세트를 원합니다 내 비용 함수는 일부 곡선에 대한 볼록 특성

어쨌든 바깥을 보면 파라 메트릭 모델을 사용하면 나에게 중요한 것은 매개 변수화가 아니라는 것입니다 그러나 실제로 친숙한 기능의 기하학 올바른 목표를 볼 때 네 >> [들리지 않음] 따라서 자연스러운 그라디언트를 연결할 수 있습니다 내 형상을 관련 시키면 자연 그라데이션을 정의하는 나머지 매니 폴드 커브 세트의 커브 지오메트리에 나는 그것이 연결이 될 것이라고 생각합니다

그것은 당신이 어떻게 움직일 수 있는지 알려줍니다 >> 네 그러나이 경우 첫 번째 재산이 있습니다 익숙한 기능의 볼록 함은 기본적으로 달성됩니다 당신은 단지 내부를보고 있기 때문에 두 번째는 문제를줍니다 여기 트릭은 둘 사이의 균형을 잡을 수 있다는 것입니다 내가 가족 때문에 문제가 생겼을 때 함수는 볼록한 것이 아니 었습니다

그들은 선을 근사 할 수있었습니다 "좋아, 더 많은 커브를하겠습니다 " 다른 부분을 가진 플레이어는 그래서 어려움을 한 손에서 정리 모형의 다른 손 기능의 볼록 함과 가족의 볼록 함 그래서 나는 언제 그것을 썼는지 몰랐습니다 하지만 그것은 매우 간단하지만 강력한 도구입니다

그러나 이것은 내가 지금 생각하는 것입니다 아마도 틀 렸습니다 나는 내가 틀렸다면 많은 사람들이 말해 줄 수 있다고 생각했습니다 그래서 그것은 저에게 기회를줍니다 실제로 논문에 무엇이 있는지 토론하십시오 이 논문에서 이것은 논문의 마지막 부분에있었습니다

내가 아주 좋아하지 않는 결과를 제공하기 위해 그 단점에 대해 이야기하겠습니다 하지만 흥미로운 부분이 있습니다 암시 적 모델에 관한 것입니다 GAN, VA 같은 것 또한 좋은 예입니다

내가가는 예가 매우 다른 종류의 곡선과 혼합을 사용하십시오 사실, 나는 그것이 작동하지 않는 혼합물을 보여줄 것입니다 암시 적 모델에 관심이있는 이유는 저는 단어의 중요한 속성을 찾고 싶습니다 있는 것보다는 특정 분포에 따라 다릅니다 변하지 않는 중요한 속성을 찾고 싶습니다 분포 변화에 특정 종류 또 다른 이야기입니다

하지만 기본적으로 엔지니어링 된 모델 대신 배포 보안을 통해 최근 모델과 매우 가깝거나 내부에 있으며 모든 거리를 사용할 수 있습니다 중요한 속성을 나타내는 매우 간단한 모델을 사용하고 싶습니다 그러나 데이터 배포가 현실적인지는 신경 쓰지 않습니다 그래서 사이의 거리 실제 분포와 모형의 분포 내가 최소화하려고하는 것은 정말 중요합니다 이 최대 가능성을 원한다면 좋은 도구가 아닙니다

간단한 모델이 무엇입니까? 몇 가지 관찰되거나 잠재 된 변수와 관련된 것 분포가 퇴화되고 저 차원 매니 폴드로지지됩니다 그것은 밀도가 없다는 것을 의미합니다 따라서 밀도 추정이 없습니다 그래서 그 해결 방법 사용하여 간단한 모델을 보강하는 것입니다 노이즈 모델과 노이즈 모델을 조정할 때까지 원하는 결과를 얻고이를 감독되지 않은 학습이라고합니다

그것은 실제로는 아니지만 나는하고 싶습니다 노이즈 모델을 추가 할 필요가 없는지 알고 하지만 재미있는 거리를 찾으십시오 올바른 속성이 있습니다 아직 찾지 못했습니다 그러나 몇 가지가 있습니다 암시 적 모델링은 관찰 된 데이터를 가지고 있다는 것입니다 분포 Q로 흐르는 나는 내가 알고있는 배포판을 가지고있다 매개 변수화 된 기능을 통해 앞으로 모수 분포를 만들기 위해

샘플을 얻을 수 있습니다 기본적으로 두 개의 샘플러가 있습니다 데이터 인 하나는 무제한 인 또 다른 하나입니다 Theta를 최적화하기 위해이 분포를 비교하고 싶습니다 좋은 점은 저 차원지지를 가질 수 있습니다

기본적으로 이것은 매우 좋습니다 매니 폴드 지지율이 낮은 분포를 나타냅니다 수학으로 쓸 수 있습니다 흥미로운 것은이 # 표기법입니다 운송 문헌에서 일반적입니다 G-Theta # Mu를 보시면 중 하나에 대한 푸시를 의미 함수 G-Theta를 통한 분포 Mu 많이 사용하겠습니다

그것은 퇴화 분포에 좋습니다 이제 분포를 비교하십시오 너무 똑똑해지기 전에 문헌에 무엇이 있는지보세요 분포를 비교하는 것에 관한 큰 문헌이 있습니다 기본적으로 강력한 토폴로지를 생성하는 것이 있습니다 총 변형과 같이 밀도가 필요한 쿨백-라이 블러

그것은 필요하기 때문에 거리가 아닙니다 밀도, 비대칭, 가능하면 무한 에 사용되었던 Jensen Shannon GAN의 첫 번째 버전 실제로 작동하지 않기 때문에 아무도 사용하지 마십시오 비대칭에는 밀도가 필요하지 않습니다 제곱근은 실제로 적절한 거리입니다 그러면 더 최근의 것들이 있습니다 Wasserstein-1이 있습니다

Wasserstein 거리는 모두가 알고 있거나 설명해야한다고 가정합니까? 시간이있어 설명 할 수있을 것 같습니다 그래서 저는 두 개의 분포 P와 Q를 가지고 있습니다 이것이 제가 WL, Peyre 소개에서 취한 그래프입니다 두 개의 분포 P와 Q, 그리고 나는 한계 P와 Q의 합동 분포를 구하고 공동 분포는 어디에서 보조금을 운송해야합니다 하나의 분포에서 두 번째 분포를 만들 확률 그래서 파이는 최소 이상입니다 모든 공동 배포 일부 비용 함수의 한계 P와 Q가 있습니다

운송비가 비싼 지 아닌지를 알려줍니다 이원성 정리로 최고야 모든 Lipschitz의 하나의 기능 X의 F 분포에 대한 기대 Y의 F의 두 번째 분포에 대한 마이너스 기대 항상 정의되어 있습니다 기본 공간의 측정법과 관련이 있습니다 밀도가 있거나 Lipschitz의 기능 중 하나 그것은 Wasserstein GAN에게 영감을주었습니다

거의 Kantorovich이지만 약간의 성공을 거두었습니다 때 나를 놀라게 한 또 하나 내가 처음 봤는데, 나는 무지하기 때문에 Diane Bouchacourt의 논문에서 그것이 Szekely의 에너지 거리입니다 네가있는 기괴한 일이야 기대하다 두 분포 지점 사이의 거리 두 번 곱하기 분포 차이 내부를 제거합니다 당신은 보여줄 수 있고 나는 그것을하지 않을 것입니다 이것은 동일하다 기본적으로 여기서 사용하는 거리와 또는 MMD 방법에서 사용하는 커널

최대 평균 불일치 MMD는 기본적으로 동일한 역할을합니다 다시, 당신은 Wasserstein과 에너지 거리를 모두 가지고 있습니다 MMD, 주 토폴로지를 정의하십시오 어쩌면 그들은 정말 의존 아래의 미터법 공간 분포 >> DiscoGAN의 경우 근사치 신경망과 함께이 최고 아니면 대포보다 더 똑똑한 일을합니까? >> 그들은 캐논보다 똑똑하지 않습니다

이제는 미터법을 MMD-GAN이라고하는 새로운 방법으로 작성했습니다 왜 대포로 똑똑한 일을하지만 또한 적대적인 용어로도 사용됩니다 사실, 그는이 정의를 벗어납니다 따라서 동일한 지오메트리를 갖지 않았습니다 이제 분배 공간에서 혼합물을 살펴 보겠습니다

P0, P1의 경우 최대 분포 Pt는 두 분포의 혼합물입니다 나는 배포판이 있다고 가정합니다 생성기에 의해 암시 적으로 정의됩니다 혼합물이 볼록하다고 생각합니다 아마도 볼록한 혼합물이라고하면 혼합물 세트에 대한 주요 볼록한 존중 그밖에

그것이 의미하는 바입니다 기본적으로 모든 혼합물에 대해 세타 T는 G-Theta T를 통해 Mu를 밀면 내 분포가 나옵니다 문제는 P0과 P1이 0이 아닌 여백을 가진 G-Theta 지원 T2 세타 T보다 불연속 또는 Theta에서 G-Theta 로의 불 연속적입니다 두 경우 모두 배우기가 매우 어려울 것입니다 불연속 기능을 배우는 것은 재미가 없기 때문에 최적화

증거는 간단합니다 두 개의 분포 P0을 취합시다 G-Theta 공급 장치가있는 P1 여기에 약간의 여백 Mu 모든 Epsilon 양성에 대해 그러나 Z의 G-θ 0은 작다 따라서 G- 쎄타 제로의 출력은 항상 P0의 공급 장치에 속합니다

G-Theta 제로를 통해 Mu를 앞으로 밀면 P0이 구현되기 때문입니다 모든 Epsilon, Z의 G-Theta Epsilon, Epsilon 확률로 P1의 공급원에 속합니다 작은 규모이지만 관리가 있다면 Z의 일부는 P0의 공급 P1의 P0 공급 즉 Z가 있으므로 Z의 G-θ 0과의 거리 Z의 G- 세타 엡실론이 우리의 4 명이 Epsilon 인 방법에 관계없이 U 따라서 이것은 본질적으로 확률 공간을 커브하는 혼합물, 이 두 분포 사이에 곡선을 만들고 싶습니다 당신은 어딘가에 끊을 연속성이 있습니다

연속 할 수 없습니다 그래서 이것은 혼합 곡선이 일치하지 않습니다 암시 적 모델의 기하학 전혀 다른 곡선이 필요합니다 변위 곡선으로 이동하는 동안

검색 시간으로 돌아가서 P0에서 P1까지의 운송 계획 한계가 P0 및 P1 인 공동 분포입니다 우리는 최적이라고합니다 DXY에 대한 DP의 기대 공동 분포에 대한 기대는 최소입니다 지수 P는 어설 션 P 거리 중 하나입니다 같은 그림이 여기에 있습니다 이제 유클리드의 경우 기본 공간이 아닌 경우 측지선을 따라야하는 것이 더 복잡합니다

간단한 사례를 살펴 보겠습니다 변위 곡선은 Pt를 정의 할 것입니다 최적의 운송 계획을 통해 혼합물을 추진하는 것 즉, 최적의 운송 계획을 세웁니다 배포부터 시작하여 이민자 권한을 갖겠습니다

P 음식 운송 계획을 따르면 저는 Q로갑니다하지만 교통 수단에서는 난 그냥 떨어 뜨릴거야 분수 T와 내가 어떤 분포를 얻었는지 보라 이제 P_0이 G_Theta_0이라고 가정 해 봅시다 [들리지 않음] G_Theta_0 및 P_1을 통해 mu를 앞으로 밀기 u G_Theta_1의 푸시 포워드 글쎄, 내가 둘 다 앞으로 밀면 공동 배포가 있습니다

그것이 교통 계획입니다 두 가지의 조합을 추진하면 이 운송 계획에 대한 변위 곡선이 있습니다 기본적으로 가족이 G_Theta 함수는 근사치가 충분히 강합니다 이것은 최적의 계획에 가깝습니다 그래서 실제로 필요했습니다 G_Theta_0을 원하는 것으로 가져갈 수 있기 때문입니다

>> 알겠습니다 >>이 최적의 변위는 u로 G_Theta_t에 가깝습니다 기본적으로 다시 한 번 경고를하면 복잡 할 수 있습니다 나는 여기에 지나치게 주장하고 싶지 않습니다 난 그냥 말할 때 G_Theta 제품군은 충분히 풍부하고 근사치입니다 변위 곡선이 패밀리 내부에있는 것이 당연합니다 기본적으로 변위 볼록성은 자연 명목 볼록 암시 적 모델에 의해 정의 된 배포 제품군

그러한 가족은 일반적으로 논쟁 때문에 혼합 볼록한 그들이 있다면 그것들을 쓸모 없게 만드는 불연속성이 없습니다 가족과 비교할 수 있습니다 파라 메트릭 밀도 함수로 정의됩니다 파라 메트릭 밀도 기능이 있으면 파라 메트릭 밀도 함수가 근사 특성이 높고 근사 할 수있는 기회 중첩 또는 혼합물이며 여기에서 무시됩니다 혼합 곡선의 경우 밀도를 추정 할 때 매우 자연 스럽습니다

그러나 암시 적 모델이 있으면 자연 곡선은 실제로 변위입니다 문제는 변위가 볼록한 비용 함수는 무엇입니까? 그것은 또 다른 쓰레기이기 때문입니다 우리는 암시 적 모델링을 알고 있습니다 몇 가지 사실을 알려 드리겠습니다 첫 번째는 Wasserstein과 MMD가 얼마나 다른지입니다

글쎄, 나는 강력한 토폴로지를 제쳐두고 또한 불연속 문제가 있기 때문입니다 Wasserstein 논문의 주제였습니다 나는 Wasserstein과 에너지 거리를 취합니다 이중 형식을 설명하면 매우 닫힙니다 다른 유일한 것은 sup [들리지 않음]입니다

Lipschitz_1 기능에서 하나의 Lipschitz 경계인 기능 Wasserstein과 MMD에 대한 [들리지 않음]에 내가 무지하기 때문에 [들리지 않음] 예, 정말 가깝습니다 나는 그것이 꽤 큰 차이라는 것을 발견했다 Lipschitz_1이 분명히 더 큽니다 RKHS로 많은 것을 근사 할 수 있기 때문이 아닙니다

RKHS Bohr은 Lipschitz_1 Bohr와 가깝습니다 어쨌든 측지학에 대해 토론 할 수 있습니다 분배 공간이 갖추어 진 경우 에너지 거리 또는 MMD 거리 가장 짧은 경로를 보여줄 수 있습니다 두 분포 사이의 혼합 곡선입니다 가장 짧은 길을 보지 않았다는 것만 빼고 거리를 최소화하면 최단 경로는 꽤 볼록성 측면에서 중요합니다 분포 공간이 Wasserstein_P와 같을 때 가장 짧은 경로는 변위 곡선입니다

Wasserstein_1에는 둘 다 있고 모든 종류가 있습니다 약간 변위되는 하이브리드 커브의 약간의 혼합물 공간의 다른 부분 또는 다른 반전 Wasserstein_1에는 많은 측지학이 있습니다 통계적 속성, 내가 사이에 예상 거리를 보면 종점에 대한 분포 Q 및이 경험적 근사치 에너지 거리는 그것은 n 이상에 있습니다

Wasserstein에게 그것은 n에 대한 차원이고 d에 대한 차원입니다 재앙입니다 이것은 Sanjeev가들을 수없는 좋은 예입니다 그의 영역에서 이것이 완전히 도달했습니다 완전히 희망이없는 것 같습니다

그러나 당신이 그것을 실행할 때 무슨 일이 일어나고 있습니까? 실제로 ED MMD는 치수가 작을 때 잘 작동합니다 이것이 [청취 불가] 논문에있는 내용입니다 [들리지 않는] 용지가 다릅니다 높은 차원에서 매우 빨리 붙습니다 Wasserstein 훈련은 꽤 잘 작동하는 것 같습니다 나는 그것이 매우 쉽고 매끄 럽거나 전부라고 말하지 않을 것입니다

그것은 정상적인 신경망뿐만 아니라 작동하지만 작동의 기울기입니다 예를 들어서 그것은 전형적인 침실입니다 이러한 모든 초기 이미지 혁신 문제에 사용됩니다 이것들이 예입니다 MMD 교육을 받으면 특정 신경망, 당신은 그 세대를 얻습니다 Wasserstein 거리로 훈련하면 이 네트워크를 얻을 수 있습니다

그게 왜 힌지가 가장 끔찍한 통계적 속성 작품을 훨씬 더 잘 생각할 수 있습니다 나는이 사진이 보면, 그것은 일종의 미인 대회입니다 그렇게 많이 말하지 않습니다 그러나 여전히 볼 수있는 일관된 효과입니다 그것의 많은 세트, 거기에 뭔가가 있습니다

어떻게 일이 잘못 될 수 있습니까? 괜찮아 이것은 예입니다 균일하고 매우 간단하며 완전히 구성되었습니다 그러나 그것은 그것을 보여주기 위해 만들어졌습니다 상황이있을 수 있습니다 지역 최소값과 Wasserstein_1과 같은 에너지 거리는 그렇지 않습니다 구성 예입니다

그렇게하도록 설계되었습니다 그러나 최소한, 그것은 당신이 얻을 수있는 개념 증명입니다 에너지 거리가있는 지역 최소 당신은 Wasserstein과 함께하지 않습니다 이제 저는 가족의 볼록함에 대해 이야기했습니다 거리 함수의 볼록함에 대해 [들리지 않음] 제가 최소화하려고하는 것은 DQ, P_Theta입니다

비용 함수 P를 DQ로 P, 그것은 볼록한가요? 변위 볼록합니까? 혼합 볼록은 일직선이므로 작동하기 쉽습니다 변위 볼록은 먼저해야하기 때문에 더 복잡합니다 이것은 일반적으로 미터법 공간에서는 사실이 아니라고 확신합니다 L1 거리를 갖춘 L2를 가져 가십시오 이것이 맨해튼입니다 거리를 제외하고는 거리의 이산화없이

측지선은 가장 간단한 방법으로 세로로 가로로 가로로 이동합니다 여기이 십자가는 L1입니다 L2에 L1 거리를 장착하면 볼록합니다 죄송합니다 세트와 관련하여 볼록합니다

측지선이며 L2의 L1 메트릭에 사용됩니다 그러나 두 볼록 세트의 교차점은 볼록하지 않아도 연결되지도 않습니다 또한 거리를 0으로 설정하면 여기이 두 곡선이 측지선이라는 것을 알 수 있습니다 파란색은 볼록하지만 거리를 0에 가깝고 빨간색은 그렇지 않습니다 따라서 기본적으로 제공되지 않습니다

알았어요 Wasserstein 거리 변위 볼록하지 않습니다 여기에 반례가 있습니다 원에서 균일 한 Q B는 중앙에서 회전하는 스틱에서 균일합니다

스틱의 길이는 LL입니다 PL과 Theta 사이에 Q의 플롯 Wasserstein을 표시하면 세타에 의존하지 않기 때문에 회전 비대칭은 L에만 의존하고 감소합니다 기본적으로 스틱이 클 때 Wasserstein 거리가 더 작습니다 실제로는 매우 직관적입니다 이제 스틱을 약간 돌리고 P1과 P0 사이의 변위 보간

여기에 PT가 있습니다 하지만이 PT는 곡선을 따르지 않습니다 그것은 직선을 따르고 있습니다 여기이 도트 도트 선은 직선입니다 즉, 회색 세그먼트는 P0 및 P1보다 약간 짧습니다

조금 짧기 때문에 Wasserstein 거리가 더 큽니다 여전히 희망이 있습니다 기본적으로 당신이 얻는 것, 희망은 당신이 쓸 수 있다는 것입니다 내가 싫어하는 정리 한계가 너무 심하기 때문에 그러나 그것은 심지어 볼록성을 위반하더라도 T의 용어로 묶을 수 있습니다 1 빼기 T 곱하기 이제 G_Theta를 늘려도 무언가가 줄어들지 않습니다

이것이 내가 싫어하는 이유입니다 고정 수량입니다 기능에 따라 다릅니다 증거가 아주 초보적인 접착제 그것은 약간 성가 시지만 실제로는 그리 어렵지 않습니다 그런 다음 거의 볼록한 최적화 정리를 적용 할 수 있습니다 보증이 있다고 결론 내립니다 Wasserstein을 사용하여 암시 적 모델 최적화 그 값이 전 세계 최소값에 가까운 지역 최소값 만 근방은 그다지 좋지 않습니다 내가 신경망에 가지고있는 것 나는 그것을 줄일 수 없기 때문에 근사 함수를 증가시킵니다

내가 대략적으로 근사하더라도 내 기능은 Wasserstein 거리와 관련하여 볼록했습니다 내 기능 군은 Wasserstein 거리를 정확히 고려하여 나는 여전히이 여분의 용어를 가질 것이다 어쨌든, 나는 이것과 거꾸로 있었다 보기 때문에 재미 있다고 생각합니다 중요한 것이있는 예 [들리지 않음]의 기하학 인 기계 학습 배급은 장비 될 수있다 혼합물과 매우 다른 곡선으로

때로는 암시 적 모델 때문에해야합니다 여전히 어떤 종류의 것을 얻을 수 있습니다 이러한 방식으로 볼록성 결과 및 최적화 결과 우리가 논문을 쓸 때 정말이 결과에 흥분했습니다 정리는 나에게 너무 단순하다 하지만 제 관찰은 이런 종류의 실제로 결과는 그렇게 간단하지 않습니다

그들은 문학에서 일반화하기가 훨씬 더 어렵습니다 시간이지나면서 내 마음이 바뀌었던 아마 실제로 생각 이 사소한 정리는 그렇게 나쁘지 않습니다 많은 어려운 결과를 아주 단순하게 만들기 때문입니다 그래서 내 결론은 혼합 곡선에 대한 볼록 함은 로 회귀 모형 최적화 강한 근사 특성 하강 알고리즘은 거의 전 세계 최소값을 산출합니다 이 속성은 정확한 매개 변수화와 무관합니다 암묵적인 편견에 대해서는 아무 것도 말하지 않습니다

매개 변수화와이를 가장 잘 활용하는 방법에 의해 유도됩니다 암시 적 생성 모델에서 변위 곡선에 대한 볼록 함이 더 보인다 혼합 곡선과 관련하여 볼록성보다 자연 스럽습니다 그것은 우리의 잠재력입니다 이미지에 대해 생각하십시오 이미지에서 이미지의 혼합은 쓰레기입니다

몰라 자연 지오메트리의 이미지에는 변위 지오메트리가 있습니다 따라서 사용 가능성이있을 수 있습니다 이상한 곡선과 증명 어떤 종류의 네트워크에 흥미로운 것들, 특히 이미지에서 잘 작동하는 모든 네트워크 그러나 나는 그것을하지 않았으며 어떻게 해야할지 모르겠다 그것 그게 다야

>> 질문 할 시간 >> 네 >> 부분적으로 이해하지 못했습니다 2 일반화에 대해 이야기하기 시작했을 때 나는 파트 1이 훈련에 관한 모든 것을 의미합니다 >> 아니요, 일반화에 대해서는 전혀 이야기하지 않았습니다 >> [들리지 않음]

>> 일반화에 대해서는 아무것도 없습니다 >> 당신은 어떤 점에서 그것이 >> 미안, 2 부 무슨 말인지 알 겠어 >> 맞아 >> 하강 알고리즘이 진행될 수 있도록하는 속성 거의 전 세계적으로 복잡한 속성으로 줄어 듭니다 매개 변수화에 의존하지 않습니다

그러나 매개 변수화는 하강 알고리즘은 다음과 같습니다 우리는 생체 공간에서 일하기 때문입니다 따라서 암묵적인 편견을 만듭니다 그들은 당신이 찾을 솔루션을 결정할 것입니다 일찍 멈 추면 그들은 당신이 멈출 곳을 결정할 것입니다 예를 들어, 솔루션 공간이 있으므로 레벨이 설정됩니다

제로 레벨이므로 연결합니다 그것은 데이터 공간에서 매우 기이합니다 결과에 따르면 해당 수준까지 나는 그들 중 하나에 갈 수 있도록 연결되어 있습니다 그것은 내가 좋은 것에 갈 것이라고 말하지 않습니다 반면에 익숙한 기능이 매개 변수화되는 방식 익숙한 기능이더라도 제로 행렬을 상당히 많이 바꾸고 있습니다

아주 잘 해결책에 도달 그것은 일반화 측면에서 우수합니다 >> 당신은 할 수 있습니다 >> 할 수 있습니다 만약 내가한다면, 이것은 매우 문제에 의존하는 것입니다 그것은 본질적으로 달려 있기 때문에 매개 변수 설정 방법에 대해 >> 커널 방식과 같은 시점에서 이것은 커널이 당신이 [들리지 않음]을 시도하는 것뿐만 아니라 일반화 할 것입니다 >> 아니, 당신은 그 증거를 설정했습니다

>> 알겠습니다 >> 종이를 Francis와 그의 학생의 게으른 학습지 그의 이름을 기억해야합니다 죄송 해요 >> [들리지 않음] >> 알겠습니다 그것이 얼음이나 사자 또는 이와 같은 것인지 확실하지 않습니다 >>이 학생은 [들리지 않음] 학생입니다

>> 알겠습니다 어쨌든 오늘이 논문을 가져 가면 그들은 경험적으로 당신이 따르는 해결책을 보여줍니다 탄젠트 채널은 작업 수에 비해 성능이 떨어지고 논쟁이 있습니다 그러나 그것은 끝입니다 시작 신문은 이런 종류의 게으른 학습은 많은 모델에 나타날 수 있습니다 특정 방식으로 스케일링을 변경할 때 그래서 그것은 희귀 속성이 아니라고 말합니다 일반화 보장 측면에서 많은 것을 제공하지 않습니다 이 솔루션은 매우 좋습니다

그것은 우리가 실제로 알고있는 것들과 상당히 일치합니다 커널 방식이 작동하면 솔루션을 제공합니다 그러나 실제로는 이미지에 대한 CNN뿐만 아니라 일반 좋은 이유 때문에 CNN은 이미지에 매우 적합합니다 >> 그러나 나는 단지 이해하려고 노력하고 있습니다 당신이 무슨 말을하는지 이해합니다 그러나 파트 1은 지금 당신이 말하는 것을 설명하지 않습니다

>> 1 부에서는 세계적으로 가장 가까운 곳으로가는 것은 기하학적 일뿐입니다 그것은 매개 변수화에 의존하지 않습니다 >> 아무 상관이 없습니다 >> 매개 변수화가 직교 관심사에 대한 영향 암묵적인 편견이 중요합니다 이것이 내가 말하는 것입니다

>> 알겠습니다 괜찮아 그 일 >> 내가 말하는 전부입니다 >> 녹음 중입니다 [들리지 않음] >> 내가 설립하려고 에 대한 복잡성 변위 코드 또는 추가 코드 하강 알고리즘으로 무언가를 할 수 있습니까? 문제는이 등급의 곡선에서 볼록합니다

>> 하나, 저는 전혀 몰라요 당신이 그것을하더라도 그것은하지 않습니다 올바른 솔루션으로 안내 할 것입니다 어쨌든 당신이 생각하는 사실은 동시에 매우 강력한 모델 용어 근사화 속성 및 동시에 매개 변수화 측면에서 매우 복잡하거나 유용한 것입니다 그것들을 모두 분리하는 것이 좋습니다 당신은 잘 말할 수 있습니다 이 강력한 모델로 해결책을 찾겠습니다 이제 매개 변수화 작업을 할 수 있습니다 내 문제에 적합하게 만들었습니다

이를 통해 학습 알고리즘의 역학을 바꾸고 있습니다 더 흥미로운 것들을 향해서 >> 매우 동의합니다 적어도 내가 이해하는 한 철학 그러나 레벨 세트가 연결되면 하강 알고리즘은 세계 최소는 직관적으로 매력적입니다 그러나 당신이 가지고 있다면 그것은 분명하지 않습니다 실행할 수있는 하강 알고리즘 연속 시간과 [들리지 않음] >> [들리지 않음]

C 만 내용이 속도 곡선을 제한하는 경우 f의 모든 지역 최소값은 세계적입니다 계속해서 전 세계 최소값을 찾으면 최대 [들리지 않음] 전역을 살펴보십시오 두 번째 부분은 바깥 쪽 가장 나는 그렇게하지 않았지만 같은 종류의 증거입니다 >> 맞아 그러나 세트가 될 수는 없었습니다

아마도 이것은 제한 속도 곡선에 의해 배제 될 것입니다 예를 들어, 물론 당신은 사용하는 지수입니다 당신은 할 수 없습니다 [들리지 않음] 알고리즘 다항식 [들리지 않음] >> 나는 다항식에 대해 말하지 않았습니다 합리적인 방법으로 강하하는 알고리즘이 있다면 당신이 말할 수있는 의미는 최소 지역을 찾을 것입니다, 그러면 새로운 세계를 찾을 것입니다 이것이 내가 의미하는 전부입니다

레벨 세트는 약한 가죽 끈 논쟁입니다 그러나 이것은 내가 추측하는 기하학이라고 생각합니다 예 >> 표면이 평평하다면 기본적으로 하위 수준 집합을 연결할 수있었습니다 그러나 당신은 여전히 ​​글로벌 최적으로 수렴하지 않습니다

>> 이것이 속도를 제한 한 이유입니다 경계 속도에서 일어나는 것은 실제로 그 속도입니다 기본적으로 현지 최소 금액을 취하면 기본적으로 X 지점을 중심으로 나는 내가있는 공간이있다 올라가거나 나는 평평한데 아래에 선을 그려야하는 점 이 평평한 지역의 중심 아래가이 평지에 있기 때문에 어느 시점에서 아래로 가야합니다 종점 볼록성과 모순됩니다 원한다면 아마 자랄 수 있습니다

x와 a1x가 있습니다 내 기능은 평평합니다 나는 아래에 있다고 가정합니다 따라서 x와 y와이 곡선은 속도를 경계로합니다 기본적으로 아래 어딘가에 키를 찾을 수 있습니다 기본적으로 함수의 값은 Gamma_t는이 선형 하강 라인보다 높아야합니다

기본적으로 그들은 선택됩니다 한계 속도는 매우 중요합니다 다른 경우에는 실제로 우리는 나중에 그것이 훨씬 더 단순하다는 것을 알고 있습니다 글쎄, 그것은 실제로 같은 것입니다 Lambda는 아래에 z 지점이 있습니다

당신은 레벨 M을 가지고 있습니다 당신은 x를 가지고 있습니다 여기 평평한 구역이 있고 z로 가고 싶습니다 z가 충분히 낮 으면 당신은 완전히 아래에 호를 가질 것입니다 그러나이를 위해서는 한계 속도가 필요합니다

t를 조금 움직일 때 당신은 큰 변위를하지 않습니다 기능 공간 또는 제한 속도 어 Where 어? 음, 그것은 평평한 지역입니다 한계 속도는 여기 생각합니다 지금 찾으려고하면 나는 그것을 잘못 찾을 것입니다 괜찮아

예 >> 네, 첫 번째 결과는 보편적 근사입니다 찾은 곡선이 연속적임을 어떻게 보장합니까? 모든 점에 대해 근사 기가 있기 때문에 그러나 아마도 별개의 일이 어려울 수도 있습니다 >> 내가 말했을 때 내가 보여줄 방법을 정확히 알고 있기 때문에 당신은 많은 포인트를 찾을 수 있습니다 연속성이없는 기능 아주 쉽습니다

당신은 밖에 갇혔습니다 내가 아직 몰라 죄송 해요 내가 있다고 말할 때 나는 단지 나를 깨달았다 우리가 아직 [들리지 않는] 연속성 문제 함수를 근사하기 위해 바인딩해야 할 수도 있습니다 및 또한 유도체

괜찮아 >> 더 이상 질문이 없으면 Leon에게 감사를 표합니다 >> 고맙습니다

Convergence of High Performance Computing, Big Data, and Machine Learning Workshop – 2018 (Day 2)

나는 카밀 로버츠, 국장 NITRD를위한 협조와 나는 가지고 있었다 마지막까지의 엄청난 시간 모든 이들과 함께 하루와 반쪽 프리젠 테이션

나는 짧은 순간을보고 싶다 수산 고마워요 NIH에서 계속 진행 중입니다 그녀 – [박수 갈채] >> 그만큼 기쁠 것입니다 – – – 고맙습니다

조직위원회 그리고 모든 중재자 그 후에해야 할 큰 일이있는 사람 이 때문에 그들은해야한다 한 페이지 보고서 작성 그들의 구체적인 영역은 다음과 같습니다 돌아올 수있는 흥미 진진한 이야기 NIH TECH에 감사드립니다

지원, 그들은 행했다 재미있는 정보 얻기 프리젠 테이션 업 및 제작 모든 작업이 실제로 작동하는지 그리고 재키 어제와 애드리안 오늘 누가 그 일을 보여 주 었는가? 기술 지원 및 모든 것을 필요합니다 고맙습니다, 모든 사람 우리는 어제 모두 동의 할 수 있습니다 놀랍다

프리젠 테이션 및 다양성 보기 및 모든 사람의 상호 작용 정말 멋 졌어요 진행의 증거가 있습니다 수렴의 그러나 아직도 많은 해야 할 일과 질문들 우리는 얼마나 많이해야 할까? 내가 가진 것들 중 일부 오늘 들으세요 정말로 거기에 있어야 하는가? 컨버전스 또는 오버레이 또는 어떻게 작동 하는가? 작업? 이만큼 할 일이 많네 아침의 브레이크 아웃이 보급됩니다

이 조금은 더 깊은 곳으로 우리는 적당한 계량기 RS는 우리에게 줄 것이다 입력 나의 일의 한 부분으로서, 지사 화이트 하우스의 기술, 너와 함께 할 일들 여기 우리가 할 것입니다 워크샵 보고서 그 수준에서 읽으십시오 HEC와 BIG 기관 데이터와 우리는 AI가있다 그들은 중개 작업 그룹입니다

지금 그들은 가지고있을 것이다 이 기회를 읽는 기회 음, 미국은 좋은 생각을합니다 그래서 나는 곧 시작된다고 생각한다 작동과 함께, 그것은 훌륭합니다 >> 우리는 분명히 커플을 가졌다

우리 팀에 대한 관료주의 우리는 우리의 생각을 담았 기 때문에 파워 포인트 그래서 이것은 대단한 세션이었습니다 나는 정말로 패널리스트를 즐겼다 프리젠 테이션 어제와 우리가 오늘 토의했다 IT가 정말로 흥미로웠다

이 모든 사람들에게 감사합니다 이 사람들에 참여 함 토론 그 중 하나가 실제로 발생했습니다 나는 그것을 보았습니다 높은 성능의 렌즈 컴퓨팅 센터는 흥미 진진한 방법으로 컨버전스 대상 어떤 의미에서, 그것이 어디에 있는지 고무가 도로를 만나다

그들은 수렴성이있다 그리고 그것과 거래하고있다 이미 대단한 서비스를 했어 우리의 토론에 대한 목록으로 우리가 겪은 사건의 수 이 주변을 돌아 본다

대단히 추측입니다 가장 먼저, USECASE 큰 규모에서 온다 실험 엄청난 양의 데이터 큰 스케일에서 스트리밍 실험 장소 하이 퍼포먼스 컴퓨팅이 필요합니다 함께 거래 데이터 수신 거부 그것

기계 학습 사례 마침내 끝났다 어디 까지나 높이에 도달했습니다 컴퓨터가 필요합니다 이것은 시뮬레이션입니다 일부 지역을 초대하고 싶습니다

기계 학습 또는 기계 운전 중의 학습 시뮬레이션의 앙상블 또는 시뮬레이션에서의 기계 학습 또는 시뮬레이션 캠페인 높음을 요구하는 큰 데이터 세트 성능 계산 그래서 이것은 OFTENTIMES NOT DUE입니다 컴퓨터 규모로 데이터의 크기는 필요하지만 너는 다른 곳에있다 건축술의 특징 너는 탐구하고 있을지도 모른다

이 거대한 데이터 분석 및 그런 다음 데이터 집계 그리고 컴퓨터로, 당신이 할 수있는 생각 봉사하고 싶다 그 중간의 계산 컴퓨팅 센터가 최고입니다 그것을하기위한 장소 도구의 확장 성 및 기계 학습의 기능 인공 지능과 분석 SO 융합 근원 소프트웨어 스택 NEW 교육 훈련의 필요성 지원할 사용자 및 사람 높은 곳에있는 새로운 사용자 성과 컴퓨팅 센터

인터페이스 및 높은 액세스 성과 컴퓨팅 많은 논의가있었습니다 커맨드 라인은 어떻게 될 수 있는가? 깜짝 놀랄만 한, 깜박임 예를 들어 커서가있는 커서 더 많은 것을 위해 사용 가능한, A 하이퍼 사용의 개념 성과 계산 데이터 경화가 많이 일어났습니다 하지만 사이클에 관한 것이 아니라 그 데이터의 관리 많은 사람들이 운전 중이다 과학 그런 다음 몇 가지 주제가있을 수 있습니다

도전과 열정 온 세상의 주제 고조파는 밖으로 나옵니다 내일 온 센터 많이 달라질 것입니다 오늘처럼 보입니다 컨버전스는 넘어서 보입니다 다른 뉘앙스의 수, 배포 작업 흐름, 수행 중 취업 시설 및 스트리밍 데이터 기능 및 어떻게 일을 할 수 있을까요? 분석에 계속 끝까지 퍼지는 가장자리 고등 컴퓨팅 센터 그 다음의 수렴 기계 학습 및 시뮬레이션과 큰 데이터 현재 일어나고있는 분석 시뮬레이션에 의한 기본 운전 데이터와 다른 지점은 더 많은 것을 필요로합니다 가장자리에 컴퓨팅하지만 또한 가장자리에 똑똑한 컴퓨터

그래서 나는 어떤 사람이라도 초대 할 것이라고 생각한다 나를 용납 할 수있는 사람들의 내가 뭘 잘못했는지 알고있어 IT가 추가되는지 확인하십시오 다음은 랜디 브랜트입니다 >> 감사 드리고 싶습니다

미카엘라와 그녀의 소프트웨어 및 GOOGLE의 모든 것 DOC 그럼 내가 갖고 있지 않아 파워 포인트 나는 더 많은 것 중 하나라고 생각한다 그 흥미 진진한 아이디어 나와야 할 것입니다 큰 기계가 아니라

현실은 우리가 살 것입니다 ECOSYSTEM은 모든 필요 사항을 충족합니다 거기에 들어가기 위해서, 나는 키스가 들여온 것 첨단 컴퓨팅 및 그 브리핑 데이터의 전체 모델 다양한 출처에서, 그것들을 다양하게 가지고가는 것 무제한 적 처리 수준 그들은 더 많은 것들에 도달합니다 중앙 집중식 시설 저장 분석은 AN 우리가 진짜로 중요하게 생각하는 모델 EDGE 컴퓨팅의 생각 함께 일하는 모든 사람 프로그램의 다른 부분 그 원근법에 그것, 그래서 그것 중요한 중요성을 알려줍니다 우리가 당면한 과제 세트 필요한 것

그리고 나는 그 중 한 가지를 생각했다 정말 흥미로운 아이디어 HPC는 우리와 함께합니다 MPI 및 MPI, 귀하가 제공하는 것 단일 장소에서의 능력 전체를 묘사하기 위해 계산 꼭대기에서 내려다 본 지점 의미를 나타내는 것은 이것이 전반적인 계산, 이것은 내가 뭘하려고하는지, 이것은 그것이 어떻게 분할되어 있는가? 에 치의 더 많은 부분 작업 스타일의 계산 현재, 그것은 바닥 위로입니다 건축물 건설 실행될 소프트웨어 EDGE DEVICES, BUILD THE 실행되는 소프트웨어 함께 핵심, 그들과 함께 COBBLE 다양한 커뮤니케이션과 함께 의정서와 그것의 실적 기본적으로 분배 된 시스템 너는 걱정할 필요가있다

낙하 허용치, 대역폭 문제와 함께 끝내라 이들 광고는 잠재적이지만 고도의 공학적 성질을 가진 표면 일하게 그래서 여기에서 MPI가 있습니다 모델, 너무, 당신에게주는 더 많은 하향식 관측 그가 전화를하고, 코드를 쓰게한다 부분적으로는 가장자리에, 부분적으로는 구름과 대형 기계에 부분적으로 함께 가져 가세요 문제를 해결하고 대처하십시오

공연, 퍼시픽 어느 곳으로 가는지 조정 MACE와 그 이상을 만들기 똑바로 나는 거기에 있다고 생각 했어 정말 흥미 진진한 – 중 일부 목표는 NSF에 대한 단식 생산할 수 있습니다 이것은 분명히 흥미를 끄는 자료 내가 생각했던 공감 몇 가지 강력한 아이디어가있었습니다 다른 흥미 진진한 것들 그게 나왔다고 생각해

생산성의 전부입니다 지금 당장이게있어 다양한 프레임 워크 다른 곳으로 와라 지역, 특히 데이터 분석 프레임 워크 및 좀 더 자세히 시뮬레이션 관점 나는 생각한다 일반 생각 이게 세상 이니? 일하러 가고 있습니다

소프트웨어가 더 많이 발전 할 것입니다 KIND OF – 당신은을 숨길 것입니다 기계의 복잡성 프레임 워크를 이해하고 매우 강력합니다 문제는 지금 내가 원하는 경우이다 이러한 수렴 유형을 수행하려면 내가 애 쓰고있는 곳 최고 사용 금액 비슷한 위치, 일부 금액 기계 학습 및이 다른 부분, 지금 프레임 워크는 얘기해야합니다

각각 다른 사람은 그렇지 않습니다 그게 진짜로 설계된 지금 그래서 내가 어떻게 생각하니? 작업 흐름의 생성 또는 생성 미국에 연락 할 수있게 해줘 함께, 그들을 확인하십시오 적절한 APIS 및 이 인터페이스를 만든다

가능하다, 나는 또한 생각한다 생각할 방향 선택 전체 문제에 대해 소프트웨어 생산성 그리고 나서 마침내 나는 생각한다 우리는 여기에서 말합니다 더 나은 이해가 필요하다

최소한의 경우 또는 최소한의 사용 있는 것의 계산 해당 사용 사례 내가 여기 있기 때문에 여기에있다 특히 일부는 좋아합니다 어제 토론회가있었습니다 작은 비트, 아시다시피, ANSI의 다른 측면보기 코끼리, 모두가 무엇에 대해 다른 생각하기 진짜 응용 프로그램의 종류 그들은 이야기하고있다 다른 견해를 가져라

그 결과로 그것들은 어느 정도 높은 수준입니다 아무리 COWER가 있었는지 – 더 많은 과정을 보았습니다 그 이상의 토론 >> 하드웨어 그룹이 그랬어

실제적으로 은사 토론 그리고 나는에 히트를하려고 할 것입니다 그 의견에 대한 제안 너의 누구야? 내가 잊어 버린 경우에 존재했다 당신이하는 일 특히, 제발 알려줘 그래서 나는 생각한다 너와 함께하는 일에 많은 것을 이미 들었습니다

CERTAINLY는 많이 있습니다 공통점 우리는 많은 가상의 무엇에 관한 것인가? 더 많은 데이터를 수집하는 작업 운영하는 하드웨어이므로 시스템 정보 수집 작업 흐름이 더 나아질 때 이것이 무엇인지 이해하십시오 현재 사용중인 것으로 간주됩니다 정말 중요합니다

또한 나는 기회가 있다고 생각한다 어떤 것에 대해 생각하기 시작하십시오 일반적인 엔드 – 투 – 엔드 벤치 마크, 케른 벤치 마크 그렇군요 전체보기 워크로드의 성능, 아닌 전혀 다른 그림 당신이 사용할 수있는 MERIT의 이 시스템이 훨씬 더 좋다는 것을 말하십시오 이 시스템, 그 녀석들

노출을 돕기 위해 사용하십시오 병가 및 기타 하드웨어의 제한 시스템 수 많은 영역이 있습니다 우리가 그것을 느낀 곳에서 현재 하드웨어는 양쪽 모두로 제한됩니다 APC를 지원할 수있는 능력 큰 데이터 또는 AI 작업로드 됨 이 부분에는 상호 연결성 및 이것이있다

상호 연결은 간단히 그래서 메모리의 노드, 노드의 노드 주, 일반적으로 인터액션의 INTERFABRIC, HPC 및 대형 데이터 작업 부하 그래서 기억에 남을 것입니다 통합시 혁신 가공에서의 메모리는 잠재적 인 퀘스트 변형 우리는 또한 우리가 효과적인 사용법을 만들지 마라 우리가 가진 시스템

수 많은 이유가있다 왜 도전하고 있습니까? 특정 소프트웨어의 일부 같은 시간에 문제가 발생하면, 실제 정보 수집 어떻게 될까요? 수행이 어려움 그래서 많은 것들 중 하나 우리가 낳을 열망 성능 카운터하지만 네트워크 전용 데이터를 공유 할 수있는 곳 측면으로 보안 구멍 채널 및 하나의 제안 이 주소를 지정해야합니다 문제는 무엇인지 설명합니다 실제 정보 너의 삶을 원한다

성능 엔지니어 수준과 그것을 제공하는 방법 그럴 수없는 방법 당신의 보안 우리에게는 해결책이 없습니다 바로 지금 그리고 나서 파일 시스템 이 또한 많은 사람들과 마찬가지로 이 모든 것들, 부분적인 크로스 소프트웨어에 있지만 현실은 그 파일입니다

시스템, HBC 시스템 의지가 부적 절한 경우 HPC는 대용량 데이터로서 많은 사람들이 왔습니다 데이터 저장소의 발전 일반적으로 시스템은 큰 데이터 영역 및 촬영 그 이점, 발견 앞으로부터 앞으로 나아갈 길 HBC 공간뿐만 아니라 탐험 그 중 일부는 그 둘 모두에서 끝내야한다 HBC 둘 다 매우 유익합니다 큰 데이터 그 다른 것들이 올랐어

인도의 위태롭게했다 성과, 불일치가 있었지만 당신이 있다면 절도가 있었어 돈을 쓰고 싶다 시간, 당신은 그것을 만들 수 있습니다 작업

어떻게하면 시스템을 만드나요? 더 많은 성능 – 러버 많은 설명서없이 중재와 내가 생각하는 것 열린 질문입니다 우리는 또한 힘에 대해 말했습니다 효율,이 사실을 인정함 당면 과제 상업적 세계와 그럴 것입니다 우리는 그것을 다루어야한다 그들이 실제로 일으킬 것이라고 믿는다

더 많은 것을 주소서 거기에 진화 방법이있다 우리가 무엇을 할 수있는 기회 더 많이 부르면 좋을지도 모릅니다 불 연속적 접근과 그것이 의미하는 것을 탐구하십시오 그리고 나서, 다시, 우리는 풍부한 공간을 기대하십시오 하드웨어

우리는 A가 될 것이라고 생각하지 않습니다 단일 시스템 시스템은 모든 것이지만 함께 일할 필요가있다 작업량이 늘어날 수 있기 때문에 우리가 알아야 할 것들 그렇지 않은 시스템 특정 디자인 데이터 구조 및 방법 조건에 따라 검색 진실의 말보다 이것은 큰 인공 지능 시스템입니다 생각하기에 더 효과적인 방법 THE CONFIGURATION에 대하여 하드웨어는 최적화되어 있습니다 알았어, 내 파트너를 위해 브레이크 아웃, 그 밖의 모든 것 내가 더 할래? 괜찮아

>> 지금 우리는 QUICK을 가져갈 것입니다 토니와 그냥 물어 봐라 어떤 것이 든 있다면 청중이 듣기를 원하거나 당신의 말을 듣지도 않았거나하지 않았습니까? 듣고 오, 생각 했어 그러나 이것 또한있다 나에게 BREAKOUT GROUP

아무도? >> 그래서 말하기 네트워킹, 우리 모두가 직면 시간 우리는 광 파일럿을 가지고 – OSHA 우리는 다중 단계를 가지고 있습니다 같은 시간에 작동, 권리? 그래서 나는 생각하고 – 우리가 창조했다 언젠가는 아마존에게 전화했다

링크 된 섬유 링크 LINK, WORLD 실생활, 너 봐봐 그래서 나는 불량한 것을 본다 주요 공급 업체 및 기타 변이 때문에 나는 거기에 있다고 생각한다 이러한 종류의 당신을위한 방법 언급 된 일을 할 수 있습니다 [OFF MIC] >> 네, 우리가 시도한 방식이에요

여기에있는 주소 무언가 큰 MAC 위치를 호출했습니다 IP, PCB 및 정보 비트를 저장하십시오 자신과 더 많이 논의 할 수 있습니다 세부 정보 – 더 이상은 없습니다 수량, 당신은 그것을 부릅니다 기초

그래서 우리는 이야기해야합니다 – [OFF MIC] [과장된 발표자] >> 네, 다른 연결 만든 누구도 아무 것도 없어 그들이 원한다면 – [OFF MIC] >> – 도구에 대한 언급 HBC의 도움, 인터페이스 사용하기 쉽다 이 시스템들 나는 니가 어땠는지 생각해

알았어? 거기에 몇 가지 도구가 있습니다 주변 및 이용 가능 오프라인으로 이야기 할 수 있습니다 >> 누구보다? 알았어, 나오고 싶어 미국의 지혜를 기원합니다 >> 네, 알았어, 알았어

흥미로운 회의가있었습니다 많은 사람들이 알고있는 직원 수와 첫 번째 이야기, 당신은 알고 있습니다 과학에 대한 첫 번째 세션 제프 스니 더 (JEFF SNYDER 'S FASCINATING) 우버와 함께 도구 자기 운전 용 차량 나에게 무언가를 기대해 보라 그리고 나는 생각하지 않는다 자가 운전을 시작하십시오

운전자가없는 차량 몇 시간 동안 그런 다음 우리는 사람들을 보았습니다 소프트웨어 문제 및 내가 그랬다고 생각 했지 흥미 진진한, 너무 좋아, 그냥 피킹 OUT 2 인공 지능에 대해 이야기했습니다

지능형 클라우드 중간하지만 그게 분명해 HPC는 그 사람의 그림을 그리지 않았다 데이터베이스 전체 과학 이해하기 아무데도 없었던 컴퓨팅 보았고 그 것이었다 나는 FRED 'S에 의해 생각했다 그 말을 아주 멋지게 말해라

우리가하는 일의 예 과학적 컴퓨팅에서 당신이 할 수없는 시스템 상업적으로 소프트웨어 스택 지원 그래서 나는 거기에 있다고 생각한다 만들어지는 것에주의를 기울여야한다 놀랍게도 흥미 롭습니다 그런 다음 하드웨어 도전과 기회, 경험이 많은 사람들 이 시스템을 운영하는 데있어 WHO 병목에 대해 알고 있으면, 흥미 진진한 또 다시 세션 마침내 THE THE 의 도전 과제 분리 및 직원과 같은 그

우리는 그에 관해 들었습니다 그래서 나는 단지 몇 가지를 만들고 싶어 점수를보고 SUM에 간다 내 인상 처음에는, 나는 우리가보고 있다고 생각한다

하드웨어의 일부 컨버전스 HBC, 기계 학습 및 빅 데이터 두 개의 예를 보려면, 하나는 여기없는 McSTEVENS, 그는 NIH와 협력하고있다 암 프로젝트에 관해서는 그가 가지고있다 이러한 것들이 CANDLE CANDLE을 호출했습니다 3 가지를 다루는 벤치 마크 암의 다른 지역 도전과 실행 ARGON의 대형 기계들 지금 오크 리지 및 위치 이게 뭐야? 여분으로 드릴 수 있습니다

스케쥴 그래서 나는 그들의 생각을 나타냅니다 미국이 A를 수행 할 수 있습니다 HBC와 도전의 다양성 제한적이며 저에게 인상적입니다 너도 같은 것을 사용할 수있어 건축술과 실제로있다 그것은 기능적으로, 그리고 제 두번째입니다

포인트, 나는 HBR을 생각하지 않는다 서명 – 과학 컴퓨팅 그 일에 관심이있다 회사 예, 그것의 작은 부분입니다 그들의 예산과 긍정, 아마존 그리고 Microsoft와 Google은 일부 연구는 있지만 게임의 스킨, 그것이 A입니다

그 부분은 매우 작았 다 내가 생각했던 것 중 무엇을 세션의 연결을 끊는다 우리가 가진이 의제 우리가 걱정하기 때문에 과학적 연계, 당신이 쉽게 할 수없는 시스템 아무 데나 대체하십시오 열심히, 나는 아주 많이 좋아한다 베컴 만의 시각과 나는 세 번이나 어쩌면 브레인 워시 클라우드 HBC와 나에 대해서 그것을 이해하지 말라

KIRSTEN은 (는) 이야기를 나누기 시작했습니다 우리 부서의 송신부 클라우드 또는 인스트루먼트 HBC 센터와 나는 너에게 생각한다 알기 쉬운 & 가장자리에서 할 수있는 일, 중간에서 할 수있는 일 슬라이드 쇼에서 피 톨을 먹는 사람 안개 그리고 HBC에서 센터 그래서 나는 우리에게 비전이 있다고 생각한다 그 중 하나에 대한 도전 에이전시가 생각할 것입니다

할 수있는 프레임 워크 지원 소프트웨어 인프라 및 서비스 그것들을 돕는 것이 흐리게하고 HBC로가는 가장자리 센터와 나는 그것이라고 생각한다 진정한 도전과 가능성 자금 지원 기관을위한 주제 네트워킹, 내 말은, 그냥 청구서를 던지십시오 내부 네트워크로 연결 안함 시스템, 이것은 네트워킹입니다 큰 데이터를위한 사이트들 사이 TRANSFERS

우리는 변함없이 양도합니다 내 데이터의 애견들 센터, 작성 완료 신속하고 무엇을 사용하고 있습니까? 과학 DMZ에 전화하지 않았습니까? X-NET 시스템, 파티를 사용하십시오 그들이 창조했기 때문에 그들의 자신과 파울 바이 패스 [웃음] >>이 말은 내가보기에는 끔찍하지 않았다 현명한 그래서 우리는 지금 전화하고있다

연구 데이터 전송 영역 그리고 나는 분별력이 있어야한다 영국과 매우 높은 사이에 대역폭의 백본은 그렇다 정말 일반적으로 사용하기 위해 UNIVERSITIES, 마지막 실행 및 이게 맘에 든다 초점이 맞지 않아요 연구 컴퓨팅 끝에서 끝까지 나는 그것이 가능하다고 생각하지만 당신은 탐구하기 쉬운 도구가 필요합니다

병사 나는 그것이 NSF, 보기를 위해, 지불되었다 DMZ를 탐험하면서 대학은 있지만 아직도 많은 어려움이 없다 저기와 내가가는 학생을 보아라 대도시로 돌아 가기 테러 비트 디스크의 무장 사정의 편 놀라게해라 그렇게해야 할 일이 많습니다

유용하게 배포 할 수있는 제품 병목 현상을 발견하는 도구 귀하의 서비스가 모두 가능할 수도 있습니다 WRONGLY CON FIGURED, MAYBE IT MICROSOFT의 오류 및 그 것 가능하지만 너는 필요하다 EASILY BE가 될 수 있도록 알아 냈어 그리고 너는 할 수 있다고 생각해 다른 사람들과의 즐거움 지역

내가 관심을 가지는 다른 것들 언급 된, NIH 기타 중앙 기관 검색 기능 적용 공정한 데이터를 게시하십시오 알아낼 수 있고, 접근 가능하며, 상호 운용성 및 재사용 가능 정확히 무엇을 의미합니까? 당신이 구현하는 방법은 그게 다야? 중요 및 운임 그룹 기계 작동에 대해 이야기하십시오 METADATA A AND HOW YOU 구현 및 삽입 SEMANTICS 내가 마이크로 소프트에 있었을 때, 마이크로 소프트 또는 Google 만 해당 이 호출에 동의했다 SCHEMERORG, 당신이 원하는 방식으로 약간의 반목을 일으킬 수있다

웹 사이트 정보 IF 너 카사를 찾고있어 블랑카, 검색 엔진 의지 이게 내가 아는 마을이야 AM 영화 검색 너는 작은 것을 넣을 수있어 의미있는 정보

그리고 SCHEMERORG는 방법을 찾는다 추가 할 공동체 만들기 그들의 카테고리 SCHEMERORG 그리고 그렇게해라 방법

그것은 할 수있는 것입니다 사용하지 않을 수도 있습니다 하지만 최선의 방법이 되십시오 허용되는 것 그것 영역 데이터는 중요한 영역이며 유치 방법이 필요합니다

마지막 6 점, 사용성 그리고 공정하지만 다른 것이있다 R은 재현성이 있으며 또한 중요하며 컴퓨터를 할 때 신호는 조금 밖에 없다 너 때문에 할 수있어 과학적 문제 해결 이 알고리즘 또는 그 사용 알 GORITHM, 그들은 미숙하다 하지만 너는 그들에게 접근 할 필요가있다

SOFTWARE가있는 소프트웨어 귀하의 데이터에 연결된 소프트웨어 중요하다 사람들이 얼마나 많이 들었 는가? OCITY? 그렇지 않다면, 그것은 컸다 응답으로 1947 년에 설치하십시오 그 장군 ROOSEVELT 모든 과학자를 인정한 사람 에서 이루어 졌다고 제 2 차 세계 대전 맨하탄 프로젝트 레이더 및 기타 장비 원하는 모든 것 모두 그가 원했던 것입니다 구인 구직 및 비즈니스 창출 군대를 인구 그래서 그는 부시 무언가를 설정하고 누가 그 (것)들을 한 일반인 맨해튼 보안 프로젝트, 확신하지 못했습니다

매우 잘 스탈린과 베리아는 계획을 세워라 기술 정보 결과를 배포해야했습니다 모든 자금의 개방 방법 연구 프로젝트 분류되지 않았고 나는 생각한다 가질 수있는 기관 공정한 데이터의 역할과 또한 소프트웨어 및 재생산 그래서 나는 그걸 어떻게 알지 못한다

행동으로 옮긴다 그게 뭐지? 회사에 대해 생각하는 기관 내가 좋아하는 마지막 일 코멘트는 데이터에 관한 것입니다 과학 교육 나는 그것이라고 생각한다

중대한 우리는 토론에 대해 이야기했다 당신이 가르쳐 주겠습니까? A의 작동 시스템 컴퓨터 과학 과정 현대 믿기 ​​어려울 정도로 귀하게 여길 것입니다 나는 보지 않을 것이다

작동 커널 작성하기 시스템은 실제로는 래더입니다 전문의 기술은 우리가 MAYBE WE 그 모두를 다시해야합니다 그러나 데이터 과학에서 나는 최하 3 개 다른 역할 데이터 엔지니어, 그것을 얻는 사람은 위성의 데이터 및 모든면에서 교정 및 설치 함께 구축 할 수있는 패치 데이터를 설정할 수 있습니다 데이터에 손을 대십시오

분석 그래서 데이터 엔지니어는 재능이있는 사람 데이터를 가져 와서 인스 트루먼 트, 그것이 A인지 여부 위성 또는 새로운 전송 장치 그리고 그것을 양식에 넣으십시오 과학자들은 사용하기 시작할 수 있습니다 미스터 사람들의 데이터 실제로 결과를 얻을 수 있으며 그 밖의 새로운 과학 두 가지 유형을 결정해야합니다 하나는 응용 기계와 같다

AI에서 배우고 그것은 IS입니다 실제로 내가 무엇을하려고하는지 영국 내 그룹에 설치 연구실에서 우리는 어떻게 되길 원하는가? 기존 기계 학습 다양성에 대한 알고리즘 작업 데이터와 당신의 측면 거기에 어떤 간격이 있는지 찾아라 일부 작업은 물론, 일부 작업은 수행하지 않습니다 그럼 너는 잘될거야

필자, 생각해 본다 AI 연구를하기 다른 역할과 RATHER는 다른 존재와 다릅니다 그리고 그 질문은 당신입니다 사용할 수있는 도구 만들기 그들은 어디에서나 일상적인 생활을합니다 미안하다

이 방법들에 대해 그들의 자료를 깊이 배우십시오 그리고 나는 그것이라고 생각한다 흥미 진진한 도전과 정확히 당신이 그것을 어떻게 발견 할까? 기관에서 나는 분명하지만 확실하지 않다 재능이 필요한 곳이 어디인가? 미국의 사람들과 필요한 것을 채울 수있는 곳 이 거대한 양의 데이터가 다가올 때 내 관점에서 본 것은 당신은 사람들을 가르 칠 수 있습니다

대학 문맥과 그들 학업 적 경력을 가질 수 있음 그들은 또한 고용 할 수있다 폭 넓은 인구 너무 넓은 회의 생각 나게 많이 해줬 어 당신에 대해 감사합니다 기관 고맙습니다

케니 >> 알았어, 우리는 2 분 남았 어 어떤 다른 의견들, 질문들? 어떤 질문이나 의견이 있으십니까? 베드로? >> 네, 나 자신을 생각해 봅니다 누군가가 누군가를 쳤다면 SECONDS, 당신이 말한대로 물줄기는 무엇입니까? 인터페이스 문제 전통 의상과 큰 데이터, 전화를 원하시면 그것? 예를 들면, 우리의 작업 그룹 나는 하드웨어에 앉았다 너는 특별한 하드웨어를 가질 수있다

버스 타기를 좋아해 사람과 사람을 수송하십시오 한 명을위한 자동차, 아니요 그렇게 생각할 수있는 한 가지 질문 문제가 생기지 마라 인터페이스 하지만 아무도없는 사람이라면 요약 정리 중 일부 그게 뭐야? >> 하드웨어 세션에서 새로운 칩들이 있었어

나올거야 그리고 나는 너에게 생각한다 그만큼 배포판이 보일 것입니다 센터에서와 같이 가장자리에서 그리고 나는 흥미 진진한 생각을한다 도전은 무엇을 발견하고 있는가? 너는 할 수 있고,해야한다

가장자리를 옮기면서 데이터 그래서 나는 가장자리가 매우 슬프다 고 생각합니다 흥미 진진한 지역을 찾아보십시오 >> 그래, 누구 랑? >> 나도 그럴거야 그것은 모두 가능하지만 정말로 가능합니다

지금 당장은 힘듭니다 가장자리의 통합 및 클라우드에 연결되었습니다 그래서 나는 IT가오고 있다고 생각한다 생산성 저하 우리가 할 수있는 문제 이것이 더 쉽게 이루어집니다 그래서 우리는 가능하게 할 수 있습니다

더 많은 것을 위해 더 많은 사람들 신청서? >> 또한 여러분, 알고 있습니다 이 큰 것을 보여줬다 기계는 몇 가지 일을 할 수 있습니다 WICKED MACHINE LEARNING 신청서 너는 오래 갈 수있다

HAMMER, 플라이 형 SWATTERS가 필요하지 않습니다 ANYMORE 하지만 당신은 그 질문을 알고있다 다시 한 번 AORTING OF A 우리가 배달 할 수있는 경제 모델 이 기능은 하강합니다 큰 철 비용보다 저렴한 비용 기계 비용? >> 오케이, 오, 우리는 하나 더 가지고 있나? >> 감사합니다

아무도없는 경우 관심있어, 우리는 단지에 대해 시간 경과 후 우리의 발표 시스템은 필요할 때마다 호출 된 경계선 및 그것은 명확하게 제시된 시스템 큰 데이터를 다루기 위해 설계된 작업 부하 우리는 몇 가지 기술을 가지고있다 우리가 가지고있는 혁신 이 작업 부하를 위해 고용 됨 내가 말하기를 허용하지 않았다고 전에 지금 우리가 그것에 대해 이야기 할 수있는 공적으로, 나는 너에게 말할 수있다 그것에 대해 나는 COGNIZANT이다

그것은 보통이고 그렇지 않습니다 시간을 갖고 싶다 이 회의 >> CON >> 축하해 >> 좋은 타이밍

알았어, 정말 고마워 우리는 작업장을 가져야합니다 1 개월 후 중재자는 종이를 가지고있다 함께하고 우리는 합성하고 대리점에 대한 결정 지원 정말 고마워, 나 그것을 인정하고 선을 베풀어 라

너의 하루 만 쉬어 라